Computing the Laplace Transform

We will give a technique for computing Laplace transforms once we know other Laplace transforms. This material is taken from [1]

Theorem 1. [1] Suppose ϕ is piecewise continuous on $[0,\infty)$ and to make it simple, assume $|\phi(t)| \leq M$, $|\phi(t)| \leq M$ on $[0,\infty)$. Then it is true that $f(s) = \int_0^\infty e^{-st}\phi(t)dt$ converges absolutely and uniformly for $R \geq s \geq s_0 > 0$. Suppose also that $\int_0^1 \frac{|\phi(t)|}{t} exists$. Then for s > 0

$$\int_0^\infty e^{-st} \frac{\phi(t)}{t} dt = \int_s^\infty f(x) dx.$$

Proof. The integral $f(s) = \int_0^\infty e^{-st} \phi(t) dt$ converges absolutely and uniformly so we can integrate from $x = s_0$ to x = R and change the order of integration.

$$\begin{split} \int_{s_0}^R f(x)dx &= \int_0^\infty \phi(t) [\int_{s_0}^R e^{-xt}dx]dt \\ &= \int_0^\infty \frac{\phi(t)}{t} [e^{-s_0t} - e^{-Rt}]dt \\ &= \int_0^\infty \frac{\phi(t)}{t} e^{-s_0t}dt - \int_0^\infty \frac{\phi(t)}{t} e^{-Rt}dt. \end{split}$$

An easy estimate proves that $\int_0^\infty \frac{\phi(t)}{t} e^{-Rt} dt \to 0$ as $R \to \infty$. Notice we have proved that $\int_s^\infty f(x) dx$ converges.

Corollary 1.

$$\int_0^\infty e^{-st} \frac{\sin t}{t} dt = \frac{\pi}{2} - \arctan(s.$$

Proof. It is easy to compute

$$\int_0^\infty e^{-st} \sin(t) dt = \frac{1}{1+s^2},$$

by noticing that $\sin t = Im(e^{it})$. Then apply the theorem.

References

[1] Widder, David, Advanced Calculus, Theorem 7, p 450; Prencice Hall, (1961).