Computing the Laplace Transform

We will give a technique for computing Laplace transforms once we know other Laplace transforms. This material is taken from [1]

Theorem 1. [1] Suppose ϕ is piecewise continuous on $[0, \infty)$ and to make it simple, assume $|\phi(t)| \leq$ $M,|\phi(t)| \leq M$ on $[0, \infty)$. Then it is true that $f(s)=\int_{0}^{\infty} e^{-s t} \phi(t) d t$ converges absolutely and uniformly for $R \geq s \geq s_{0}>0$. Suppose also that $\int_{0}^{1} \frac{|\phi(t)|}{t}$ exists. Then for $s>0$

$$
\int_{0}^{\infty} e^{-s t} \frac{\phi(t)}{t} d t=\int_{s}^{\infty} f(x) d x .
$$

Proof. The integral $f(s)=\int_{0}^{\infty} e^{-s t} \phi(t) d t$ converges absolutely and uniformly so we can integrate from $x=s_{0}$ to $x=R$ and change the order of integration.

$$
\begin{aligned}
\int_{s_{0}}^{R} f(x) d x & =\int_{0}^{\infty} \phi(t)\left[\int_{s_{0}}^{R} e^{-x t} d x\right] d t \\
& =\int_{0}^{\infty} \frac{\phi(t)}{t}\left[e^{-s_{0} t}-e^{-R t}\right] d t \\
& =\int_{0}^{\infty} \frac{\phi(t)}{t} e^{-s_{0} t} d t-\int_{0}^{\infty} \frac{\phi(t)}{t} e^{-R t} d t .
\end{aligned}
$$

An easy estimate proves that $\int_{0}^{\infty} \frac{\phi(t)}{t} e^{-R t} d t \rightarrow 0$ as $R \rightarrow \infty$. Notice we have proved that $\int_{s}^{\infty} f(x) d x$ converges.

Corollary 1.

$$
\int_{0}^{\infty} e^{-s t} \frac{\sin t}{t} d t=\frac{\pi}{2}-\arctan (s .
$$

Proof. It is easy to compute

$$
\int_{0}^{\infty} e^{-s t} \sin (t) d t=\frac{1}{1+s^{2}},
$$

by noticing that $\sin t=\operatorname{Im}\left(e^{i t}\right)$. Then apply the theorem.

References

[1] Widder, David, Advanced Calculus, Theorem 7, p 450; Prencice Hall, (1961).

