Bump Functions

January 17, 2012

This note describes how to make a C^{∞} bump function with compact support. The exposition is taken from Jack Lee's book, *Introduction to Smooth Manifolds*. We are already familiar with the function $f(x) = e^{-1/x^2}$, if $x \neq 0$; 0, if x = 0. See Folland exercise 9, §2.1. Now define a new C^{∞} function h(x) by

$$h(x) = \begin{cases} e^{-1/x^2}, & \text{if } x > 0, \\ 0, & \text{if } x \le 0. \end{cases}$$

The same argument used in exercise 9 can be used to prove that h is C^{∞} . We define a C^{∞} function g by

$$g(x) = \frac{h(2-x)}{h(2-x) + h(x-1)}.$$

Then

Finally define

$$b(x) = g(|x|).$$

Then b(x) = 0 if |x| > 2, b(x) = 1 if |x| < 1, and $0 \le b(x) \le 1$ if $1 \le |x| \le 2$. Also b is C^{∞} , since it is clearly C^{∞} if |x| < 1 or |x| > 2; and since |x| is C^{∞} when $x \ne 0$, b is the composition of C^{∞} functions for $1 \le |x| \le 2$.

If we use a linear change of coordinates we can create a C^{∞} function

$$b_{a,b}(x) = b(-2 + 4\frac{x-a}{b-a}),$$

such that $b_{a,b}(x) > 0$ in (a, b) and $b_{a,b} = 0$ if $x \notin [a, b]$.