Dirichlet's Test

January 31, 2011

Theorem 1. Let $a_{n} \geq 0$ be a decreasing sequence, $a_{n} \geq a_{n+1}$ and $a_{n} \rightarrow 0$. Suppose there is a number M so that $\left|\sum_{1}^{n} b_{n}\right| \leq M$ for all n. Then $\sum_{1}^{\infty} a_{n} b_{n}$ converges.
Proof. Define $B_{n}=b_{1}+b_{2}+\cdots+b_{n}, B_{0}=0$. Then $b_{n}=B_{n}-B_{n-1}$ and

$$
\begin{aligned}
a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}+\ldots a_{n} b_{n} & =a_{1}\left(B_{1}-B_{0}\right)+a_{2}\left(B_{2}-B_{1}\right)+a_{3}\left(B_{3}-B_{2}\right)+\ldots a_{n-1}\left(B_{n-1}-B_{n-2}\right)+a_{n}\left(B_{n}-B_{n-1}\right) \\
& =B_{1}\left(a_{1}-a_{2}\right)+B_{2}\left(a_{2}-a_{3}\right)+\ldots B_{n-1}\left(a_{n-1}-a_{n}\right)+B_{n} a_{n} .
\end{aligned}
$$

Let

$$
s_{n}=\sum_{k=1}^{n} a_{k} b_{k} \text { and } S_{n-1}=\sum_{k=1}^{n-1} B_{k}\left(a_{k}-a_{k+1}\right) .
$$

Then the preceding equation can be written as $s_{n}=S_{n-1}+B_{n} a_{n}$. Since $\left|B_{n}\right| \leq M$ and $a_{n} \rightarrow 0, B_{n} a_{n} \rightarrow 0$. Now I claim that the series $\sum_{k=1}^{n} B_{k}\left(a_{k}-a_{k+1}\right)$ converges absolutely. We estimate $\left|B_{k}\left(a_{k}-a_{k+1}\right)\right| \leq$ $M\left|a_{k}-a_{k+1}\right|=M\left(a_{k}-a_{k+1}\right)$ since $a_{k}-a_{k+1} \geq 0$. The partial sums of the series $\sum_{1}^{n}\left(a_{k}-a_{k+1}\right)$ are $a_{1}-a_{n+1}$. Since $a_{n} \rightarrow 0$ the series converges to a_{1} and by comparison the series $\sum_{k=1}^{n} B_{k}\left(a_{k}-a_{k+1}\right)$ converges absolutely. We did not prove that $\sum_{1}^{\infty} a_{n} b_{n}$ converges absolutely. We related the partial sums to the series $\sum_{k=1}^{n} B_{k}\left(a_{k}-a_{k+1}\right)$ which converges absolutely.

