Dirichlet's Test

January 31, 2011

Theorem 1. Let $a_n \ge 0$ be a decreasing sequence, $a_n \ge a_{n+1}$ and $a_n \to 0$. Suppose there is a number M so that $|\sum_{1}^{n} b_n| \le M$ for all n. Then $\sum_{1}^{\infty} a_n b_n$ converges.

Proof. Define $B_n = b_1 + b_2 + \dots + b_n$, $B_0 = 0$. Then $b_n = B_n - B_{n-1}$ and

 $a_{1}b_{1} + a_{2}b_{2} + a_{3}b_{3} + \dots + a_{n}b_{n} = a_{1}(B_{1} - B_{0}) + a_{2}(B_{2} - B_{1}) + a_{3}(B_{3} - B_{2}) + \dots + a_{n-1}(B_{n-1} - B_{n-2}) + a_{n}(B_{n} - B_{n-1}) \\ = B_{1}(a_{1} - a_{2}) + B_{2}(a_{2} - a_{3}) + \dots + B_{n-1}(a_{n-1} - a_{n}) + B_{n}a_{n}.$

Let

$$s_n = \sum_{k=1}^n a_k b_k$$
 and $S_{n-1} = \sum_{k=1}^{n-1} B_k (a_k - a_{k+1}).$

Then the preceding equation can be written as $s_n = S_{n-1} + B_n a_n$. Since $|B_n| \leq M$ and $a_n \to 0$, $B_n a_n \to 0$. Now I claim that the series $\sum_{k=1}^n B_k(a_k - a_{k+1})$ converges absolutely. We estimate $|B_k(a_k - a_{k+1})| \leq M|a_k - a_{k+1}| = M(a_k - a_{k+1})$ since $a_k - a_{k+1} \geq 0$. The partial sums of the series $\sum_{1}^n (a_k - a_{k+1})$ are $a_1 - a_{n+1}$. Since $a_n \to 0$ the series converges to a_1 and by comparison the series $\sum_{k=1}^n B_k(a_k - a_{k+1})$ converges absolutely. We did not prove that $\sum_{1}^\infty a_n b_n$ converges absolutely. We related the partial sums to the series $\sum_{k=1}^n B_k(a_k - a_{k+1})$ which converges absolutely.