Hyperbolic Functions

December 1, 2006

Many of you are unfamiliar with hyperbolic functions. Here is a crash course on hyperbolic functions. Trigonometric functions could be called circular functions since $(\cos t, \sin t)$ is a parameterization of the circle $x^{2}+y^{2}=1$. Similarly $(\cosh t, \sinh t)$ is a parameterization of the hyperbola $x^{2}-y^{2}=1$ and hence $\sinh t, \cosh$ are referred to as hyperbolic functions. The functions $\sinh t, \cosh t$ are defined as follows.

$$
\begin{aligned}
& \cosh t=\frac{e^{t}+e^{-t}}{2} \\
& \sinh t=\frac{e^{t}-e^{-t}}{2}
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\cosh ^{2} t-\sinh ^{2} t=1 \tag{1}
\end{equation*}
$$

It is also easy to see that

$$
\begin{align*}
\cosh (s+t) & =\cosh (s) \cosh (t)+\sinh (s) \sinh (t) \tag{2}\\
\cosh (2 t) & =\cosh ^{2}(t)+\sinh ^{2}(t) \tag{3}\\
& =2 \cosh ^{2}(t)-1 \tag{4}\\
\sinh (s+t) & =\sinh (s) \cosh (t)+\sinh (t) \cosh (s), \tag{5}\\
\sinh (2 t) & =2 \sinh (t) \cosh (t) \tag{6}
\end{align*}
$$

Also

$$
\begin{align*}
& \frac{d}{d t} \cosh t=\sinh t \tag{7}\\
& \frac{d}{d t} \sinh t=\cosh t \tag{8}
\end{align*}
$$

These functions can come in handy in integration problems. For example let us find an antiderivative of $\sqrt{1+x^{2}}$. We substitute $x=\sinh t$ to get

$$
\begin{aligned}
\int \sqrt{1+x^{2}} d x & =\int \cosh ^{2}(t) d t \\
& =\int \frac{\cosh (2 t)+1}{2} d t \\
& =\frac{t}{2}+\frac{\sinh (2 t)}{4} \\
& =\frac{t+\sinh (t) \cosh (t)}{2} \\
& =\frac{x \sqrt{1+x^{2}}+\sinh ^{-1}(x)}{2} .
\end{aligned}
$$

By using the quadratic formula we see that

$$
\sinh ^{-1}(x)=\log \left(x+\sqrt{1+x^{2}}\right)
$$

and hence

$$
\begin{equation*}
\int \sqrt{1+x^{2}} d x=\frac{x \sqrt{1+x^{2}}+\log \left(x+\sqrt{1+x^{2}}\right)}{2} \tag{9}
\end{equation*}
$$

