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This note is an exposition of basic facts about power series. First a reminder about lim.

Definition 1. Let {an} be a sequence of real numbers.

lim an = lim
m→∞

sup{ak : k ≥ m}.

Proposition 1. ` = lim an if and only if

1. For every ε > 0 there is an N so that sup{aj : j ≥ N} ≤ `+ ε.

2. For every ε > 0 there an ≥ `− ε for infinitely many n.

Proof. Let s = lim an.
Suppose ` is a number satisfying (1) and (2). Then (2) implies that sup{ak : k ≥ m} ≥ ` − ε since

there is always an element of {ak : k ≥ m} that is at least as big as ` − ε. So s ≥ ` − ε. Also by (1)
s ≤ sup{aj : j ≥ N} ≤ `+ ε. So `− ε ≤ s ≤ `− ε and since ε is arbitrary, s = `.

On the other hand sup{aj : j ≥ N} ≤ s + ε since sup{aj : j ≥ N} decreases to s. And there must be
infinitely many n so that an ≥ s− ε or else s ≤ s− ε which clearly cannot happen.

Theorem 1. Let ` = lim |an|
1
n . Let R = 1

` .

1. If |x| < R,
∑∞

0 anx
n converges absolutely.

2. If |x| > R,
∑∞

0 anx
n diverges.

Proof. 1. If |x| < R = 1
` then choose ε so small that ρ = |x|` + ε < 1. Then |x||an|

1
n ≤ ρ if n is large.

Hence |anx
n| ≤ ρn and by comparison

∑∞
0 anx

n converges absolutely.

2. If |x| > R, then |x|` > 1 and now choose ε > 0 so that r = |x|` − ε > 1 Then for infinitely many n,
|x||an|

1
n ≥ r > 1. Hence

∑∞
0 anx

n diverges.

Definition 2. R = 1
` , where ` = lim |an|

1
n is called the radius of convergence of

∑∞
0 anx

n.

Theorem 2. R = sup{|x| : {anx
n : n = 1, 2, . . . } is bounded}.

Proof. Let S = sup{|x| : {anx
n : n = 1, 2, . . . } is bounded}. If |x| > S then {anx

n : n = 1, 2, . . . } is not
bounded. Hence

∑∞
0 anx

n does not converge because the terms do not go to 0. If |x| < S then |x| < S0 < S

and let M = sup{|anS
n
0 }. So |anx

n| = |anS
n
0 |
(
|x|
S0

)n
≤ M

(
|x|
S0

)n
and by comparison

∑∞
0 anx

n converges

since |x|S0
< 1. We have proved that if |x| < S,

∑∞
0 anx

n converges and if |x| > S,
∑∞

0 anx
n diverges. The

same property is true of R. There can be only one number with this property. So R = S.
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We still need to deal with the question of uniform convergence.

Theorem 3. Let R be the radius of convergence of
∑∞

0 anx
n. Let c < R. Then

∑∞
0 anx

n converges
uniformly on [−c, c].

Proof. Let c < d < R and let |x| ≤ c. Then |and
n| ≤ M and |anx

n| = |and
n|
(
|x|
d

)n
≤ |and

n|
(

c
d

)n ≤
M
(

c
d

)n. (Notice it is not necessarily true that |anR
n| ≤M so we need to squeeze d between c and R.)

So every power series converges uniformly on compact subsets of its interval of convergence.
Now lim(n

1
n |an|

1
n ) = lim |an|

1
n so the radius of convergence of the series obtained by differentiating

term-by-term is the same as the radius of convergence of the original series and hence the differentiated
series also converges uniformly on compact subsets of the same interval of convergence as the original series.

Theorem 4. If f(x) =
∑∞

0 anx
n converges on I = (−R,R) then f ′(x) exists on I and f ′(x) =

∑∞
1 nanx

n−1.

Corollary 1. If f(x) =
∑∞

0 anx
n, an = f (n)(0)

n! .
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