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Why are conditionally convergent series interesting? While mathematicians might

undoubtably give many answers to such a question, Riemann’s theorem on rearrangements of

conditionally convergent series would probably rank near the top of most responses.

Conditionally convergent series are those series that converge as written, but do not converge

when each of their terms is replaced by the corresponding absolute value. The nineteenth-

century mathematician Georg Friedrich Bernhard Riemann (1826-1866) proved that such

series could be rearranged to converge to any prescribed sum. Almost every calculus text

contains a chapter on infinite series that distinguishes between absolutely and conditionally

convergent series. Students see the usefulness of studying absolutely convergent series since

most convergence tests are for positive series, but to them conditionally convergent series seem

to exist simply to provide good test questions for the instructor. This is unfortunate since the

proof of Riemann’s theorem is a model of clever simplicity that produces an exact algorithm. It

is clear, however, that even with such a simple example as the alternating harmonic series one

cannot hope for a closed form solution to the problem of rearranging it to sum to an arbitrary

real number. Nevertheless, it is an old result that for any real number of the form     ln r , where

r is a rational number, there is a very simple rearrangement of the alternating harmonic series

having this sum. Moreover, this rearrangement shares, at least in the long run, a nice feature

of Riemann’s rearrangement, namely that the partial sums at the breaks between blocks of

different sign oscillate around the sum of the series.
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If we rearrange the alternating harmonic series so that instead of alternating 1 positive

odd reciprocal with 1 even reciprocal, we alternate blocks of 375 consecutive odd reciprocals

(the positive terms) with blocks of 203 consecutive even reciprocals (the negative terms), we will

get a series that converges to 1 (well, almost) as depicted in Figure 1 (the vertical axis is not to

scale in this figure). The turns in Figure 1 indicate the partial sums at the break between the

positive and negative blocks. The partial sums seem to oscillate around 1. Now if we rearrange

the series with blocks of 1 positive term followed by blocks of 36 negative terms, we will get a

series that converges exactly to –ln(3). However, as we see from Figure 2, for this

rearrangement the partial sums at the breaks require some initial posturing before they appear

to start oscillating around the sum.
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Figure 1: p = 375, n = 203 Figure 2: p = 1, n = 36

How did we know to choose 375 and 203 in the first example, or 1 and 36 in the sec-

ond? Why does the first example almost  converge to 1, but the second converges exactly to

-ln(3)? Why do these partial sums converge in the manner depicted in Figures 2 and 3? The

purpose of this article is to address these issues by considering the following questions:
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What is the sum of a “simple” rearrangement of the alternating harmonic series?

How should the series be rearranged to obtain a sum within a given tolerance of a speci-

fied value?

What is the behavior of the convergence of these simple rearrangements?

The latter two questions are completely answered by Riemann’s theorem for rearrangements of

arbitrary conditionally convergent series, but our goal is to provide a more concrete setting of

Riemann’s results within the context of the alternating harmonic series with the hope that the

reader will then have a better understanding of the general theory. As a bonus,  we will

encounter along the way some interesting mathematics in the form of Riemann sums, Euler’s

constant, continued fractions, geometric sums, graphing via derivatives, and even Descarte’s

Rule of Signs.

The Sum of Simple Rearrangements

The alternating harmonic series
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is well known to have the sum 
  ln2. We will say that a series is a simple (p,n)-rearrangement of

the alternating harmonic series, or just a simple rearrangement for short, if the first term is 1,

the subsequence of positive terms and the subsequence of negative terms are in the original

order, and the series consists of blocks of p positive terms followed by n negative terms; that is,

the series has the form
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For example, with p = 1 and n = 2 the series becomes

  

1− 1
2

− 1
4

+ 1
3

− 1
6

− 1
8

+ 1
5

− 1
10

− 1
12

+ 1
7

− 1
14

− 1
16

+K

= 1− 1
2





 − 1

4
+ 1

3
− 1

6




 − 1

8
+ 1

5
− 1

10




 − 1

12
+ 1

7
− 1

14




 − 1

16
+K

= 1
2

− 1
4

+ 1
6

− 1
8

+ 1
10

− 1
12

+ 1
14

− 1
16

+K

= 1
2

1− 1
2

+ 1
3

− 1
4

+ 1
5

− 1
6

+ 1
7

− 1
8

+K





= 1
2

ln 2

From this calculation, whose details can be easily justified, one readily sees that a different

sum may be obtained by rearranging the original series.

It is an old but apparently not well known result that a rearrangement of the form in

expression (1) has the sum 
   ln2 + 1

2 ln p
n . A brief history of this problem can be found in

[5, p. 320]. After Riemann showed that by a suitable rearrangement of a conditionally con-

vergent series, any prescribed behavior regarding convergence or divergence could be obtained,

Ohm and Schlomilch investigated the rearrangements of the type given above, while

Pringsheim [7] first discovered the general results for when the relative frequency of the positive

and negative terms is modified to give a prescribed  asymptotic limit. The reader is referred to

[2, pp. 74-77] for additional details. For completeness, we include a derivation of the formula

for simple rearrangements.

Suppose 
   

ak
k =1

∞

∑  is a simple (p,n)-rearrangement of the form given in (1). For each positive

integer m define
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2
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m
        and         Em = Hm − ln(m +1)
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Figure 3 : Hm and Em (shaded area)

The term 
  Em  is the error of the Riemann sum 

  Hm  illustrated in Figure 3 for approximating the

definite integral 
   

1
x dx

1

m +1

∫ . The sequence of error terms is a bounded increasing sequence of

positive numbers whose limit γ is called Euler’s constant.1 By unraveling the rearrangement,

we get that
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 + E2mp −1 − 1

2 Emp −1 − 1
2 Emn .

Now let m go to infinity to obtain

1 γ = 0.5772156... It is not known whether γ is rational or irrational, but by using continued fractions
Brent [1] has shown that if γ is rational, then it’s denominator must exceed 1010000.
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lim

m →∞
ak

k =1

m (p +n )

∑ = ln 2 + 1
2 ln p

n + γ − 1
2 γ − 1

2 γ = ln 2 + 1
2 ln p

n . (2)

Of course, this only considers those partial sums with a full complement of p+n terms; because

the terms approach 0, however, this is sufficient to give the sum of the series.

How to Choose p and n

Formula (2) shows that only real numbers of the form 
   ln r , where r is a rational

number, can be obtained exactly as the sum of a simple rearrangement. In this case we need

only choose p and n to satisfy p/n = r/4. For example, a simple (1,4)-rearrangement will have

the sum 0 = ln(1). More generally, for a positive integer m, an (m2,4)-rearrangement will sum to

ln(m) while a (1,4m2)-rearrangement will have sum –ln(m ). So how do we get a rearrangement

that sums to –ln(3)? Take p = 1 and n = 36.

What if we want our rearrangement to sum to a value S? Unless S is of the form 
   ln r

we cannot do this exactly, but suppose we are willing to get within ε of  S. Now how should we

choose p and n? By solving  
   ln2 + 1

2 ln p
n  = S, we see that we need p/n to be approximately equal

to 
   e

2S/4  . In order to analyze the situation more carefully, we would like to find a δ > 0 such

that if the integers p and n satisfy  
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Now two inequalities about logs come to our assistance. They are that for positive values of x

less than 1, we have 
   ln(1+ x ) < x  and 

   
ln(1− x ) > −x

1− x
. Both of these inequalities can be verified

using the “racetrack principle.”2 Applying them with x =  
   

4δ
e2S  shows us that

   

S − ln2 − 1
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and so
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2δ
e2S ,

2δ
e2S

1

1− 4δ
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= 2δ

e2S − 4δ

To have our sum with ε of S, therefore, we should pick δ so that 
   

2δ
e2S − 4δ

= ε . So take 
   
δ = e2Sε

2 + 4ε

and then choose p and n so that the ratio p/n is within δ of   
   e

2S /4 .

There still remains one problem, however. There are an infinite number of choices for p

and n  for which p/n lies in the interval of width 2δ around 
   e

2S/4 . Which is the best choice to

make? In the spirit of Riemann’s proof, let us say that an irreducible fraction r/s is simpler

than the fraction e/f  if 0 <  r ≤ e and 0 < s  ≤ f. Then we want to find the simplest fraction in the

interval; that is, the one with the smallest numerator and denominator.

Let G = 
   e

2S/4  and let δ be as chosen above. If the interval (G–δ, G+δ) contains an integer

then letting p be the smallest integer in the interval and n = 1 will give the simplest rational

that we are looking for. If this is not the case, then the theory of continued fractions provides

the tools for efficiently finding the simplest fraction.

A finite simple continued fraction is an expression of the form

2  Ok, it’s really the Mean Value Theorem. If two horses start at the same spot and one always runs faster
than the other, then it will always stay ahead.
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a1 + 1

a2 + 1

a3 + 1

a4 +
O+ 1

an −1 + 1
an

where the first term 
   a1  is usually a positive or negative integer (or zero) and where the terms

   a2,a3,K,an  are positive integers called the partial quotients. A much more convenient way to

write this expression is as  
   a1,a2,a3,K,an[ ]. Every rational number can be expanded in the

form of a simple finite continued fraction. Every irrational  number can also be expanded in the

form of a simple continued fraction, but one that requires an infinite number of partial

quotients 
  ai . We would like to find a finite continued fraction that approximates the irrational

number G = 
   e

2S /4  (if this number were rational, the desired sum S could be obtained exactly

as discussed in the first paragraph of this section.)

The following algorithm will generate the continued fraction approximations to G [6].

First, define 
  x1 = G  and then recursively define 

  ak = xk   (where 
  y   denotes the floor function,

that is, the greatest integer less than or equal to y) and 
   xk +1 =1/(xk − ak ), The terms

   a1,a2,K,ak ,K are the partial quotients of the continued fraction. Next, let 
  p0 = 1, 

  q0 = 0,

   p1 = G  , and  
   q1 =1. Now we recursively define the convergents 

   pk /qk  by

  

pk = ak pk −1 + pk −2

qk = akqk −1 + qk −2

Then 
   pk /qk = a1,a2,a3,K,ak[ ] and these rational numbers converge to G . Stop the

construction the first time that 
   
G − pk +1

qk +1

< δ. The number 
   pk +1 /qk +1 will then be the closest

rational number to G with denominator no larger than 
  qk +1 but there may still be a simpler

rational number in the interval (G–δ, G+δ). To find it let   
   θ = G − δsign(pk /qk − G ) and let
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j = pk +1 − θqk +1

pk − θqk











Finally, set 
  p = pk +1 − jpk  and 

  n = qk +1 − jqk . We claim that p/n is now the simplest rational in

(G–δ, G+δ).

The continued fraction approximations of an irrational satisfy the following two

properties that will be useful to us:

(i)
  

p1

q1

< p3

q3

<L< G <L< p4

q4

< p2

q2

(ii)
   pi +1qi − piqi +1 = (−1)i +1 for each i.

Proofs of these can be found in any book on continued fractions such as [4] or [6]. We will also

need the simple but useful result that if b, d and y are positive integers with

  

a
b

< x
y

< c
d

and bc – ad = 1, then y > d and y > b . This follows because ay < bx and dx < cy  give

   y = (bc − ad )y > (bx − ay)d ≥ d and y = (bc − ad )y > (cy − dx )b ≥ b

Let us now return to our proof that p/n is the simplest rational in (G–δ, G+δ). We will

treat the case when

  

pk +1

qk +1

< G < pk

qk

(3)
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and leave the other case to the reader. Inequality (3) and property (i) implies that k is even and

therefore that

  pkqk +1 − pk +1qk = 1. (4)

Moreover, θ = G – δ.

Equation (4) and the choice of j ensure that

   
G − δ < pk +1 − jpk

qk +1 − j qk

≤ pk +1

qk +1

< G + δ (5)

and therefore that p/n does lie in the desired interval. One should also note that j is the largest

integer for which the left most inequality in equation (5) holds, with one exception. It is possible

that in the computation of j, the term 
   (pk +1 − θqk +1)/(pk − θqk ) will already be an integer (this

will happen only if G–δ is rational), in which case we must adjust j.

To show that p/n is the simplest fraction in this interval, observe that any other fraction

x/y in (G–δ, G+δ) must satisfy either

   

pk +1 − ( j +1)pk

qk +1 − ( j +1)qk

< x
y

< p
n

or
p
n

< x
y

< pk

qk

But it is easy to check using equation (4) that 
   (qk +1 − ( j +1)qk )p − (pk +1 − ( j +1)pk )n =1 and

   npk − pqk =1, so by our earlier remark we must have y > n, which completes the proof.

Table 1 gives appropriate values for p  and n for several choices of S and ε . In the ap-

pendix we list a program to compute p and n on an HP-28S calculator. Remember, however,

that the actual value that needs to be approximated by p/n is not S, but G  = 
   e

2S/4  which

grows rapidly as S is increased. Nevertheless, the continued fraction algorithm is quite fast.

One reason for this is that δ also grows as S  is increased. Indeed, if 
   
S > 1

2 log 2
ε + 4( )  then we
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would have δ > 1 so that the algorithm would stop immediately with p  equal to the smallest

integer in the interval and n = 1. For example, when ε = .00001 this would happen whenever S

exceeds 6.10305.

Table 1: Values of p  and n for which the rearranged series sums to within ε of S.

Desired Sum
S

epsilon p n Error

0.4 0.00001 74 133 0.00000516
1 0.00005 133 72 0.00001131
1 0.00001 375 203 0.00000720
π 0.1 112 1 0.08919604
π 0.001 134 1 0.00047442
π 0.0001 937 7 0.00005891
5 0.00001 16,520 3 0.00000456

10 0.00001 121,288,874 1 0.00000999
−1 0.00001 97 2,867 0.00000806
−2 0.0000001 135 29,483 0.00000002
−π 0.0001 1 2142 0.00000779

−10 0.00005 1 1,940,466,75 5 0.00004999

The Behavior of the Convergence of Simple Rearrangements

Riemann’s algorithm for rearranging a conditionally convergent series is really quite

simple. One starts by adding positive terms until you just exceed the desired sum, then you

start subtracting the negative terms until you just drop below the sum, and continue al-

ternating in this fashion. The trouble, of course, is that it is impossible to know in advance how

many terms will be necessary at each step. Nevertheless, the end result is a rearrangement in

which the partial sums at the break between blocks of different signs oscillate around the sum

of the series.

What behavior do the partial sums of a simple rearrangement exhibit? Because we will

be interested in the blocks of positive and negative terms. let us define

   

R2k −1 = 1
2 j −1

j = p(k −1)+1

pk

∑           and          R2k = 1
2 j

j =n (k −1)+1

nk

∑
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so 
   R2k −1 is the kth block of positive terms and 

   R2k  is the kth block of negative terms. We want

to investigate the behavior of the partial sums of the series 
   

(−1)i +1Ri
i =1

∞

∑ . Look back at Figures 1

and 2 to see the first 8 partial sums for a (375,203)-rearrangement and a (1,36)-rearrangement

respectively. In Figure 1 we see that the partial sums oscillate around the limit S = 1, while in

Figure 2 it appears that it takes some initial posturing before the partial sums start to oscillate

around S  = –ln(3). Moreover, the first eight 
  Ri ’s in Figure 1 are strictly decreasing as one can

readily check.

To analyze the behavior of the partial sums, let us fix values of p and n and consider the

difference 
  R2k −1 − R2k . Because it is difficult to work with arithmetic sums, we first convert the

problem to one involving a polynomial function. This will allow us to use many of the tools of

calculus. Towards this end, define the polynomial 
   Qk (x )  by

   

Qk (x ) = x (2 j −1)n

2 j −1
j = p(k −1)+1

pk

∑ − x 2 jp

2 j
j =n (k −1)+1

nk

∑

and note that 
   Qk (1) = R2k −1 − R2k . Our first goal, then, is to find when 

   Qk (1) > 0.

The derivative of the polynomial 
   Qk (x )  is given by

   

′Qk (x ) = n x (2 j −1)n −1

j = p(k −1)+1

pk

∑ − p x 2 jp −1

j =n (k −1)+1

nk

∑

Notice that the derivative is 0 at both x = 0 and x = 1. For 
  x ≠ 0 and 

  x ≠ 1 we can make use of

the observation that we have two finite geometric sums to write the derivative in closed form as

   
′Qk (x ) = x 2pn (k −1)+n −1(1− x 2pn )

(1− x 2p )(1− x 2n )
g(x )
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where 
   g(x ) = n − x 2p −n (p + nxn − px 2n ) . The exponent 2p–n  suggests that we will need to con-

sider 3 cases to determine the behavior of 
   ′Qk (x ) .

Case 1: 2p = n.  In this case we have 
   g(x ) = p − 2pxn + px 2n = p(xn −1)2  and thus g (x) > 0

for 0 < x < 1. This in turn implies that 
   ′Qk (x )  > 0 for 0 < x < 1. Since 

   Qk (0) = 0 and since the

function is increasing on the interval (0,1), we must have 
   Qk (1) > 0  for all k.

Case 2: 2p > n. Here we have 
   ′g (x ) = −x 2p −n −1h (x ) where

   
h (x ) = 2p2 − pn + 2pnxn − (2p2 + pn )x 2n = p(2p + n )(1− xn )(xn + 2p − n

2p + n
) (6)

From this we see that h(x) > 0 on the interval (0,1) and that therefore 
   ′g (x ) < 0  on the interval

(0,1). Thus g(x) is decreasing on this interval and so 
   g(x ) > g(1) = 0 for 0 < x  < 1. As in case 1,

this implies that 
   Qk (1) > 0 for all k.

Case 3: 2p < n. This is the interesting case. Here

   
g(x ) = n − p + nxn − px 2n

xn −2p

and so 
   Qk (x )  is negative on an interval to the right of 0. Will it recover to become positive at

x = 1? Notice first that g(x) has the properties

(i)
   
lim

x →o +
g(x ) = −∞ ;

(ii)
   
lim
x →∞

g(x ) = +∞

(iii) g(1) = 0;

(iv) g(x) has a local minimum at x = 1 and a local maximum at 
   
xo = n − 2p

n + 2p






1/n

∈(0,1).

To see why (iv) is true, take another look at h(x) in equation (6). These four conditions tell us

that the graph of g (x) must look something like that depicted in Figure 4, which in turn implies
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1
  xo

   ̃x
1

x̃

Figure 4: g(x) for 2p < n Figure 5: 
   ′Qk (x )  for 2p < n

1x̃ 1x̃ 1x̃

(a) (b) (c)
Figure 6: The three possibilities for 

   Qk (x )  when 2p < n

that the graph of 
   ′Qk (x )  has the form shown in Figure 5, where the point 

   ̃x  satisfies

   ′Qk (x̃ ) = g(x̃ ) = 0 . There are thus three possibilities for the graph of 
   Qk (x ) , which are illustrated

in Figure 6. We would like to know when the graph has the form of Figure 6(c). To investigate

this, let us rewrite each of the sums in the polynomial for 
   Qk (x )   in terms of the new index

i = j – p(k – 1)  for the first sum and i = j – n(k – 1) for the second sum, and then multiply by

   2pnkx −2pn (k −1). This gives a new polynomial

   

Q̂k (x ) = 2pnkx −2pn (k −1)Qk (x )

= 2pnk
2i + 2pk − 2p −1

x (2i −1)n

i =1

p

∑ − 2pnk
2i + 2nk − 2n

x 2ip

i =1

n

∑

which has the property that 
   Qk (x )  is positive if and only if 

   Q̂k (x )  is positive. Moreover,

   
lim
k →∞

Q̂k (x ) = n x (2i −1)n

i =1

p

∑ − p x 2ip

i =1

n

∑ = L (x )

where this convergence is uniform on the interval [0,2]. But L(1) = 0 and

   
′L (1) = n2 (2i −1)

i =1

p

∑ − p2 2i
i =1

n

∑ = − p2n



15

1

band of width 2

L (x )

Figure 7: The uniform convergence of 
   Q̂k (x ) to L (x )

so that we can find an interval centered at 1 and a band of width 2ε as depicted in Figure 7

such that for some positive integer 
  ko  the values of 

   Q̂k (x )  lie in the band for all k  > 
  ko  and for

all x in the interval centered at 1. This implies that for all k > 
  ko  the function 

   Q̂k (x ) , and hence

also 
   Qk (x ) , must take positive values near 1. In particular, the only possibility when k is

greater than 
  ko  is that the graph of 

   Qk (x )  must be as in figure 6(c). Thus 
   Qk (1) > 0 for all

k > 
  ko .

It is time for a recap. We have now shown that if 2p ≥ n then 
   R2k −1 > R2k  for all k, while

if  2p < n , then 
   R2k −1 > R2k  for all k > 

  ko   where 
  ko  depends on p and n. Now what about

   R2k − R2k +1? To answer this, let us proceed as before and define a polynomial 
   Wk (x ) by

   

Wk (x ) = x 2 jp

2 j
j =n (k −1)+1

nk

∑ − x (2 j −1)n

2 j −1
j = pk +1

p(k +1)

∑

It is easy to check that 
   Wk (0) = 0 , 

   Wk (1) = R2k − R2k +1, and  
   ′Wk (1) = pn − np = 0 . This polynomial

has another interesting property, however. If we check the relative sizes of the powers of x  in

   Wk (x ) we see that the largest power of the positive terms is 2pnk while the smallest power of

the negative terms is 2pnk+n. Therefore all the positive coefficients occur before all the negative

coefficients when the terms of 
   Wk (x ) are written in order of increasing exponent. Moreover, the

same must be true of the coefficients in 
   ′Wk (x ). Thus Descarte’s Rule of Signs [3] tells us that
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1

Figure 8: 
   Wk (x )

   ′Wk (x ) has exactly one positive root since its coefficients have

exactly one variation in sign. The only positive root of 
   ′Wk (x ),

therefore, is at x = 1. Since 
   
lim
x →∞

Wk (x ) = −∞ the graph of 
   Wk (x ) must

behave as illustrated in Figure 8, from which we see that

   Wk (1) = R2k − R2k +1 > 0 for all k.

So now we know the complete story about what is happening in Figures 1 and 2.

Whenever 2p > n , as in Figure 1, we have that 
  Ri > Ri +1 for all integers i, but if 2p < n, as in

Figure 2, then 
  Ri > Ri +1 once i is sufficiently large, with the exact value depending on the values

of p and n . Thus, in the long run, the partial sums of a simple rearrangement of the alternating

harmonic series do oscillate at the breaks between blocks of different sign around the sum of

the series. The generality we have lost from Riemann’s Theorem by requiring fixed block sizes of

positive and negative terms has been offset by the knowledge of how the rearrangement must

be made, while essentially maintaining the oscillatory behavior of the convergence.
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Appendix

We give here two programs for the HP-28S for finding the simplest rational in a given interval

(SRAT) and for computing the p and n  to obtain a sum S within an error ε (AHS). We will

assume for the program SRAT that the interval is on the positive real axis since that is all that

is needed for AHS.

SRAT (Simplest Rational)

For arguments x and δ, SRAT returns the simplest rational p/n in the interval [x–δ, x+δ]

Arguments Results
2: x
1: δ 1: 'p/n'

Program:
<<
→ x e
<< RCLF 0 FIX
IF x DUP FLOOR – e <
THEN

x e – FLOOR 1 + 1
ELSE

(1,0) x FLOOR 1 R→C x DUP FLOOR
WHILE 3 DUPN DROP2 C→R / x – ABS e ≥

REPEAT
– INV DUP FLOOR DUP 4 ROLL DUP 6
ROLLD * 4 ROLL + 3 ROLLD

END
DROP2 C→R 3 ROLL C→R → p1 q1 p0 q0
<< p0 q0 / x – SIGN e * x SWAP – DUP
q1 * p1 – SWAP q0 * p0 – / FLOOR DUP
p0 * p1 SWAP – SWAP q0 * q1 SWAP –
>>

END
'P/N' 3 3 ROLL 1 →LIST OBSUB 1 3 ROLL
1 →LIST OBSUB
SWAP STOF
>>
>>

Comments:

Recall the user flags; set Fix display to 0
Check if  

  x  is in the interval. If so ...

compute the smallest integer in the interval
If not ...
initialize continued fraction algorithm
Repeat until there is a convergent in the in-
terval ...
Compute next convergent and partial quotient

p1/q1 is the last convergent computed,
p0/q0 is the previous one. Use these to com-
pute θ, j, p,  and n

Substitute n for N in 'P/N', then substitute p
for P
Restore the user flags to their original settings
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RAHS (Rearranged Alternating Harmonic Series)

For arguments S and ε, RAHS returns the smallest block sizes p and n such that a (p,n) rear-

rangement of the alternating harmonic series will sum to within ε of S.

Arguments Results
2: desired sum S 2: 'p/n'
1: error tolerance ε 1: actual series sum

Program:
<<
SWAP 2 * EXP DUP 4 / 3 ROLLD OVER *
SWAP 4 * 2 + /
SRAT
DUP →NUM LN 2 / 2 LN +
>>

Comments:

Convert S to 
   e

2S /4  and  ε to
 δ = 

   e
2Sε /(2 + 4ε)

Call the SRAT program
Compute the sum of the rearranged series


