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Introduction: In 1902 LEBESGUE [2] proposed that surface area be 
defined as the infimum of the limit inferiors of sequences of areas of 
piecewise linear functions which converge uniformly to the given surface. 
In 1910 ZOARD DE GEOCZE [3] published the conjecture that, without 
loss in generality, the sequences of piecewise linear functions may be 
restricted to polyhedra which are inscribed on the given surface. In 1950 
MULHOLLAND [4] gave a proof of the correctness of this conjecture for 
non-parametric surfaces. 

Despite the success of Lebesgue's definition in stimulating an enor- 
mous body of research, a number of mathematicians [5, 6, 7, 8] have 
sought a more simple and a more geometric definition of surface area. 
The aim is to discover a definite scheme for setting up sequences of 
suitably chosen polyhedra inscribed on the given surface such that the 
corresponding sequences of polyhedral areas converge to the Lebesgue 
area, whether this be finite or infinite. To the best of this writer's know- 
ledge, every one of the definitions that to date have been proposed in 
this direction, is either less general than that of Lebesgue, or con- 
flicts with it outside of the elementary case. 

The present work provides, for non-parametric surfaces, a simple 
geometric definition of surface area which totally agrees with the 
Lebesgue definition. 

A piecewise linear function is a polyhedron no face of which is normal 
to the xy plane. In the present paper we do not make this restriction. 
We consider the set of all admissible polyhedra inscribed on the given 
surface (see later), subject only to the restriction that if T 1 and T 2 are 
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any two faces of such a polyhedron then the interiors of their projections 
on the xy plane are disjoint. 

In [9], we introduced the notion of piecewise flatness. However the 
discussion there was limited to continuously partially differentiable 
surfaces. In [I0] the concept was extended to the general case of a 
continuous non-parametric surface. In the present paper we make a 
further extension of this concept as applied to non-parametric surfaces. 
For non-parametric surfaces, this extension leads to a general geometric 
theory of surface area which totally agrees with the Lebesgue theory. 

The idea that underlies this theory is that, if a sequence of polyhedra 
(//1, Ha, . . .  ) inscribed on a given surface S is to converge areawise to 
the surface S, then the orientations of the faces of the polyhedra must 
converge to the orientations of the pieces of S which they respectively 
subtend. 

Neglect of this consideration by SERRET [1] a century ago led, sub- 
sequently, to the discovery of the Schwarz phenomenon. LEBESGUE [2] 
himseff did not take explicit cognizance of this principle with the effect 
that his definition of surface area, in the opinion of some mathematicians, 
is rather distant from the simple geometric situation. And, this defi- 
nition is very intractable. So intractable, in fact, that, in the words of 
TIBOR RAD6 [11], even such an intuitively simple proposition as that 
embodied in the GeScze conjecture resisted the efforts of some of the 
ablest mathematicians for haft a century. 

In this paper we make use of inscribed triangular polyhedra every 
face of which has an angle which lies between a prescribed angle r and 

-- r 0 < r <: ~. We refer to such 
polyhedra as admissible polyhedra. 
We also make use of triangles (inscri- 
bed in the given surface) having one 
angle between r and z - - r  and 
refer to them as admissible triangles. 
Since we limit our discussion to such 
polyhedra and to such triangles we 
shall, throughout, omit the qualifi- 
cation "admissible". 

! J 

Our basic concept is that of the deviation of a triangle that is inscribed 
in the given surface. 

Let T be a triangle inscribed in a given surface S. Let / '1  and T, be 
any two triangles inscribed in S and such that Pro] T 1 r Proj T and 
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Proj T2c  Proj T, i. e., the projections of T 1 and T 2 on the xy plane 
are subsets of that  of T. Then, by D(T), the deviation of T, we mean 
the supremum of  the acute angles between the normals to T1 and to T2. 

We now proceed formally. 

i. We consider surfaces S: z-----](x, y) defined and continuous 
on E, a closed set in the xy plane consisting of the interior and the 
boundary of a closed Simple polygon. A triangular polyhedron H is 
said to be inscribed on S if all the vertices of H are in S and Proj(/ /)  E. 
Of two such polyhedra I/1 and I/3, we Say that  H~ is a refinement of II1 
ff every vertex of i l l  is a vertex of H 2. A triangle T is said to be inscribed 
in S if all its vertices are in SI 

I f  T is a face of apolyhedron inscribed on S, then D(T) : supremum 
of the angles between the normals to triangles T 1 and T 2 each inscribed 
in S and such that  Proj (T 1 u T2) c Proj T. 

Definitions: S - ~ / ( E )  is said to be quasi-pieeewise flat (qp/) if, for 
every a ~ 0 and every fl > 0, there exists a triangular po lyhed ron / /  
inscribed on S such that  

a) For each of some of the faces of H (the so-called a-regular faces), 
the deviation is less than: a, and 

b) The Sum of  the areas of the faces o f / /  whose deviations are 
greater than  or equal t o  a, is less than ft. We refer to these faces as 
a-irregular faces. 

�9 We refer to  such a polyhedron as an (a, fl) polyhedron. 

We consider infinite sequences (Hi, H~. . . . .  ) of polyhedra inscribed 
on S such that the corresponding sequences (eh, a s . . . .  ) and (ill, fl~, . . .  ) 
both converge to zero. Clearly, if S is qp], such a sequence of inscribed 
polyhedra exists. We call it a regular sequence of inscribed polyhedra. 

A regular sequence (//1,//2 . . . .  ) of  polyhedra inscribed on S is said 
to be strongly regular ff sec 0 is bounded, 0 being the acute angle between 
tt~e z-axis and the normal to any face of any polyhedron in the sequence. 
A qT] surface is said to be strongly quasi-piecewise flat (sqpt) if S permits 
the inscription of a strongly regular sequence (//1, H2 . . . .  ) of inscribed 
polyhedra. 

L e t / / b e  a polyhedron inscribed on S and let m, m < ~ ,  be an upper 
bound of the secant of the acute angles between the z-axis and the 
normals to the faces o f / / .  I f / / *  is a refinement of H such that m is also 
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an upper bound of the secant of the acute angles between the z-axis 
and the normals to the faces o f / / * ,  then we refer to 11" as a regular 
refinement of 11. 

By D(P), the deviation of P ~ E, we mean the infimum of the set 
of deviations of triangles T inscribed in S such that  P is in the interior 
of Proj T, unless P is the boundary of E, in which case, we drop the 
requirement of interiority (i. e., it is sufficient then that  P e Proj T). 

Theorem 1. Let S ~-/(E) be sqp/. Let (111, T in , . . . )  be a strongly 
regular sequence o/polyhedra inscribed on S. I] (A1, A2 . . . .  ) is the cor- 
responding sequence o/ polyhedral areas, then (A1, A n . . . .  ) converges. 
Moreover, /or all strongly regular sequences o/polyhedra inscribed on S, 
the limit o] the polyhedral areas is unique and independent o/ r the 
particular admissibility number. 

We make use of a lemma. 

Lemma 1: Let l l  be an (a, fl) polyhedron inscribed on S. Let m, m < ~ ,  
be an upper bound o/sec 0. Let 11" be a regular re/inement o/11. Let A 
denote the area o/11, B the sum o/the areas o/the projections o/the regular 
/aces o/II ,  and A* the area o/11". Then t A --  A* t < MBa+f l  (1-f-m) 
where M is a Lipschitz constant involved in the inequality 

I sec 01-- see 02 I < M I01--  On 1. 

Proof of the lemma : sec 0 is continuously diffcrentiable on the closed 
interval [0, 0,~], where 0~ = arcsec m. Thus, sec 0 is uniformly Lip- 
schitzian on [0, 0 j .  

Let A1 denote the sum of the areas of the a-regular faces o f / / a n d  
A~ the sum of the areas of the faces o f / / *  which are subtended by the 
regular faces o f / / .  Then, one shows easily [10] that  ] A1 --  A~ ] < MBa.  

Let An denote the sum of the areas of the irregular faces o f / / a n d  
A~ the sum of the areas of the faces of H* which are subtended by the 
irregular faces of 11. Then, ]A2--A* ~ ] < A  n + A  2 m < f l ( l + m ) .  
Thus, / A - - A * /  < M B a + f l ( l + m ) .  

We now proceed to the proof of Theorem 1. 

Proo]: Corresponding to the sequence (111,11n, . . .  ), let us consider 
the sequences (al, a~ . . . .  ), (fix, fl~ . . . .  ) and (A1, A 2 . . . .  ), this last being 
the corresponding sequence of the areas of the polyhedra. 

Let m, m < ~, be a uniform upper bound of sec O. Let e > 0 be 
given. Let D denote the area of E. 

Monatshefte fiir Mathematik, Bd, 74/5. ~0 
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There exists a positive integer N1 such that if n > N1, then 

8 

~ < 4 ~  and ~, < 4 ( 1 + ~ )  " 

Also, there exists a positive integer N~ such that if n > N~, then every 
refinement of the polyhedron composed of the %-regular faces of H~ 
is a regular refinement. Let N be the larger of N 1 and N 2. 

Let n 1 > N and n~ > N. 

Consider the union U of the vertices of  the a~-regular faces of H~ 
and the vertices of the %jregular faces of H , .  Let A~I and A~2 denote 
the areas o f / / ~  and of H~2, respectively. The points of U, if necessary, 
with the addition of a finite set of well chosen points, give an admissible 
polyhedron which is a common refinement of H.I and H,~0. Let B denote 
the area of this polyhedron. 

Then 
] A,~ --  B I < MD%~ -}- fl~,(1 q- m) and 

[ A,~ - -  B ] < MDa,.. + fl~(1 -k m). 

8 ~ 8 

]A,, --  B[ < MD~M-D-~ 4 ( l q - m ) ( l q - m ) - - 2 '  

] A,~ --  B [ < M D  ~ -k 4(1- t -m)  (1 -k m)  - -  2 ' 

8 

Hence the sequence (A1, As, . . . )  converges. 

One shows easily that for the set of all strongly regular sequences 
of polyhedra inscribed on S, the corresponding sequences of polyhedral 
areas converge to a unique limit and that this is independent of r and m. 

Theorem 2. Let S = / ( E )  be any continuous sur/ace and let P be 
interior to E. I / D ( P )  = O, then / is continuously partially diJjerentiable 
at P. 

Here, as everywhere else in this paper, the partial derivatives are 
taken to exist provided the corresponding plane sections of S have 
a tangent line a t / (P) .  As such these partials may be finite or infinite. 
Here, continuity of the partials at P means that for every e > 0 there 
exists ~ > 0 such that if / has finite partial derivatives at P and at Q, 
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then if the distance between P and Q is less than d, it follows that 

] ]~(P) --  Ix(Q) I < s and 1 l , (P)  - -  Iv(Q) I < s. 

We make use of an easily proved [10] lemma. 

Lemma 2. Let D( P) --= O. Let ( T 1, T~, . . .  ) be an infinite sequence o/ 
triangles inscribed in S and such that/or each n, P is an element o~ Proj (T~). 
Let the corresponding sequence (dl, d2 . . . .  ) o~ diameters o/ the triangles 
converge to zero. Let ( V1, V~ . . . .  ) be the corresponding sequence o/ unit 
vectors such that each V~ is normal to T~. Then the sequence ( V1, V2, . . .  ) 
converges to a unique unit vector V(P).  

Corollary 1: I / D ( P )  = O, then the sur[ace S has a normal line and a 
tangent plane at Q = / ( P ) .  

We proceed to the proof of Theorem 2. 

Let C, and C~ be, respectively, the curves of intersection of S with 
the planes through Q parallel to the xz plane and the yz plane. 

Let (ql, q2, . . . )  be an infinite sequence of points on C z converging 
to Q. Let (Vql, Vq2 . . . .  ) be the corresponding sequence of unit vectors 
from Q through ql, q2, qs, . . . ,  respectively. 

If  the set {Vql, V q ~ , . . . }  is finite then there exists a convergent 
subsequence of (Vql, Vq2, . . . ) .  If  the set { Vq~, Vq2, . . .  } is infinite, then 
there exists a vector limit point of the set. There exists then a sub- 
sequence of (Vql, Vq2 . . . .  ) which converges to this vector limit point. 
Thus, in either case, there exists a convergent subsequence. 

Similarly, if (rl, r2, . . .  ) is any sequence of points on Cy converging 
to Q and (Wrl, Wry, . . . )  is the corresponding sequence of unit vectors 
through Q and through (r~, r 2 . . . .  ) respectively, then there exists a 
convergent subsequence of (Wrl, Wr 2 . . . .  ). 

Suppose now that there exist two subsequences of (Vql, Vq2, . . . )  
which converge to two distinct unit vectors. Let these be K* and V**. 
Let a subsequence of (Wrl, Wr 2 . . . .  ) converge to Vy. Then 

V* • V~ 4: V;* x V~. 

This contradicts the foregoing lemma. 

Since the sequences (Vqi, Vq~, . . .  ) converge to a unique limit vector, 

it follows that ~ x  exists at P. Similarly, ~ y  exists at P. By a similar 

argument, one shows that / has a directional derivative at P in every 
direction. 

30* 
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We now show that  the partial derivatives are continuous at  P. We 
make use of the above corollary. 

D(P) = O. Hence, for every e > 0, there exists d > 0 such that  if 
T is any triangle inscribed in S and Proj T c N(P, ~), the d-neighborhood 
of P, then the acute angle between the normal to S at Q = l(P) and the 
normal to T is less than e. 

Suppose that  P1 e N P, ~- and [~ and [~ both exist at  P1. Let 

()~ = ](P1) .  Consider QIX and Q1Y, the curves of intersection of S with 
the planes through Q1 and parallel to the xz and the yz planes, respec- 
tively. There exist tangent lines to Q~X and Q1Y. There exists a small 
triangle /'1 ----- Q1X1Y1, where X1 ~ Q1X, X1 =t = X,  gl e Q1Y, Y1 # = Y, 
and Proj T1 c N(P, 8). Since the acute angle between the normal to S 
at Q and the normal to the triangle Q1X1Y1 is less than e, it follows 
that  ]~ and ]y are both continuous at P. 

Theorem 3. Let S ~- ](E) be qPi. Then, ]or each ~ > O, the set o] the 
points P [or which D(P) > e is o] Jordan measure zero. 

Proo]: Let e > 0 be given. Let fl > 0 be given. 

There exists a finite triangulation of E such that  the deviation of 
each of the regular faces of the corresponding inscribed polyhedron 1] 
is less than e and the sum of the areas of the irregular faces is less than ft. 
The deviation at each point P which is interior to the projection of a 
regular face is less than e. The deviation at points which are on the 
boundary of the projection of a regular face may be greater than or 
equal to e, but the Jordan measure of this set is zero. The sum of the 
areas of the projections of the irregular face is less than ft. Since fl > 0 
is arbitrary, the set of the points P e E for which D(P) > e is of Jordan 
measure zero. 

Corollary 2: I] S = ](E) is qp], then the set o] the points P o] E at 
which D(P) =4= 0 is o] Lebesgue measure zero. 

Corollary 3: I] S -= i(E) is qp], then [ is partially diHerentiable on E 
al~rwst everywhere (in the Lebesgue sense). Also, I is continuously partially 
dit]erentiable on E almost everywhere. 

The foregoing corollary gives us a necessary condition if S = i(E) 
is to be qp]. This condition is not sufficient for S to be qp]. 

De]inition: Let S = ](E). The function ] is said to be absolutely 
continuous on E if for every e > 0 there exists d > 0 such that  if G 
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is a finite set of non-overlapping triangles in E the sum of whose areas 
is less than ~, then the sum of the areas of the triangles inscribed in S 
which are subtended by the triangles in G is less than e. 

Theorem 4. Let S =-/(E), where / is absolutely continuous on E. I] 
/or each e > 0, the set o] points P o / E / o r  which D( P) > e is o/Jordan 
measure zero, then S is qp/. 

Proo/: Let  a > 0 and fl > 0 be given. Let  5 be the ~ associated with 
e -=-- a in the definition of absolute continuity. There exists a simple set 
F (i. e., the union of a finite set of closed rectangles), subset of E, which 

e 

contains in its interior all the points P of E for which D(P) > ~ and 

whose area (i. e., the area of F) is less than & This set is finitely triangu- 
lable. Since E itself is finitely triangulable, it is possible to obtain a new 
triangulation of E which includes the triangulation of F. 

Consider the set E -  F. For  each point R of E -  F there exists 
a small triangle T containing R as an interior point and such that  
D(T*) < a, where T* is the triangle inscribed in S such that  Proj T*=-T. 

Letting R range over all of E - -  F yields a c o v e r i n g / '  of E --  2'. Since 

E -  F is compact, there exists a finite subset F*  of F which covers 

E -  F. These considerations yield a triangulation of E which satisfies 
the definition of quasi-piecewise flatness. 

Corollary d: Let S = / ( E ) ,  [ absolutely continuous on E. I], /or each 
s > 0, the set E~ o] the points P o] E ]or which D(P) ~ e is o] Lebesgue 
measure zero, then S is qp]. 

Proo]: E~ is closed and bounded and so, is compact. 

Theorem ~. Let S = ](E) be qp]. I] ] is continuously partially di]- 
]erentiable at P ~ E, then D( P) = O. 

We make use of a lemma. 

Lemma 3. Let z = ](x, y) be continuous on E and be partially di//e- 
rentiable on E, except possibly on a set o/Lebesgue measure zero. Let ]~ 
and/v be continuous on their domains. Let ] be partially di]]erentiable at 
P : (xo, Yo) e E. Then, ]or each s > O, there exists ~ > 0 such that, i/ 
[ Ax  ] < -r I Ay  [ < v and (xo + Ax, Yo + Ay) e E, then 
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Az = / (xo + Ax, Yo + Ay) -- / (Xo, Yo) = 

=/~(xo, Yo) Ax +/v(xo, Yo) Ay + UAx + #Ay  + 7Ix 2 Ay ~, where 

l v l < ~  ,~d Izl <~. 
Proo/: We take up the case where P : (xo, Yo) is interior to E. 

# # y 

s d !F ay  

d B a x  

$' 'I 

/ (xo + Ax, Yo § Ay) -- / (xo, Yo § 

- -  / (x, 1, y~ q- Ay) -f- A, where ] ~ ] 

For given A x and A y, ] A x] < 1 
and I Ayl  < 1, with the rectangle 
HIJK  with center at P:  (%, Yo), a 
subset of E, the function 

/ ( x +  Ax, y +  dy) - / (x ,  y +  Ay), 

as a function of x and y, is conti- 
nuous at P Hence, there exists 

> 0  such that, if Q:(x~,yl) is 
inside the square ABCD, then 

Ay) = / (xl + Ax, Yl @ Ay) -- 

~ 2  ~yy~. 

Inside the square EFGH there exists a point (x0, Yo + Ay) at 
which /~ and [v exist. 

/ (xo + Ax, Yo + Ay) -- / (x o, Yo + Ay) = / (xo + Ax, Y*o + Ay) -- 
, , - - 2  

- / (Xo, yo + ~y) + ~, where l'~ I < ~ Ay .  

Since/~ exists at (x o, Yo + Ay), for each e > O, there exists a > 0 
such that, if ]Ax  [< a, then / (x*o + Ax, yo + Ay)--/  (x o, y*o + Ay)= 
=/x(~o, yo + ~y) ~ + ~ ,  where t ~ n < ~. 

Thus, /(xo+ Ax, yo+ Ay)--/(Xo,yo+ Ay)----/~(x*o,yo+ Ay )Ax+#Ax  + L 

Since/z is continuous on its doInain, there exists fl > 0 such that, 
i f [ A x ] < a a n d  lAx[  < f l , t h e n  

L(~o, yo + ~y) = L ( G  yo) + o, where [ 0 [ < ~. 

Thus, /(xo+ Ax, yo+ Ay)--/(xo, Yo+ Ay)=/~(xo, yo)Ax+OAx+#Ax+ ),. 

Since/v exists at (xo, Yo), there exists y > 0 such that, if ]Ay ] < y, 
E 

then/(xo, yo+Ay)--/(xo,yo)=/y(xo, yo)Ay+r where ] r I < ~" Hence 

if l a x  I and I zlyl are each less than v, the lesser of a, #, and y, then 
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f(xo+ Ax, yo+ Ay)-/(Xo,yo)=lx(xo, yo)Ax+ /v(xo,yo)Ay+(O+ t t ) A x + r  ), 

wherel0l< , 
To complete the proof when P is interior to E, take ~7 : 0 + #, 

and # = r 

The case when P is on the boundary of E, is handled in the obvious 
m a n n e r .  

Corollaries o] the lemma: 

Under the hypothesis o/the above lemma, 

5. For each direction, the directional derivative o / / a t  P exists in that 
direction. 

6. The di/]erential o] ] at P exists. 

7. At  P, S has a tangent plane. 

8. For each e > 0 there exists (5 > 0 such that, i[ T I and T 2 are any 
two triangles in S(P, ~) then the acute angle between the normals to T* 1 
and T*~, triangles inscribed in S and such that Proj T~ = T 1 and Proj 
T~ = T2, is less than s. 

Theorem 5 is an immediate consequence of Corollary 9. 

Corollary 9: Let S = ](E) be qp/ and let P e E. Then D(P) = 0 i/ 
and only i] ] is continuously partially di]/erentiable at P. 

Definition: P e E is said to be an irregular point of E if for every 
neighborhood N(P,  ~), sec 0 is unbounded, 0 being the acute angle 
between the z-axis and the normal to a triangle T inscribed in S and 
such that  Pro i (T) c N(P,  6). A point Q ~ E is said to be regular if it 
is not an irregular point of E. 

Corollary 10: Let S = / ( E )  be qp/. I] E does not contain any irregular 
points, then S is sqp]. 

Proo/: E is compact. 

Theorem 6. Let S • ](E) be qp/ and let E i denote the set o/the irregular 
points o] E. I] E i is o/Lebesgue measure zero, then there exists a regular 
sequence (//1,//2, . - -) o[ polyhedra inscribed on S such that the correspon- 
ding sequence (A*I, A*2 . . . .  ) o] the polyhedral areas converges to the 
Lebesgue area o] S, whether this be finite or infinite. 
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Proo/: For every ~ > 0, there exists a closed subpolygon E:  c E 
(E* is a closed set bounded by a closed polygon) such that on E*~ there 
exist no irregular points of E and area of E - -  area of E* < e. 

Let (//~, H i , . . . )  be a strongly regular sequence of polyhedra 
inscribed on E*. By Theorem 6 of [10] the corresponding sequence of 

areas (AI,* A2,* .. .) converges to the Lebesgue integral ~ %/l~-/x4-/y.~ 

This, by  Section 4 of [10], is precisely the Lebesgue area L, of S* =](E*).  

Consider now a sequence (Sx, sz .... ) converging to zero. Let (IIl,l-Lz,...) 
be a strongly regular sequence of polyhedra inscribed on S* = fiE*). 

O n  E - -  E* there exists a finite triangulation A 2 of area less than sz 81 
which contains all the irregular points of E. Let 

= o ( ( E - E : , )  - 

With (IIn, H w . . . )  already constructed, we construct the cor- 
responding strongly regular sequence (II~I,H~,...) of polyhedra 
inscribed on E*, seeing to it that, for each i,/7~i contains F/li as a sub- 
polyhedron. We construct the regular sequence (//31, H32, . . . )  using 
(H~I,//2~ . . . .  ) in analogous manner. 

Continuing this procedure indefinitely gives us a sequence of sequence 

~,: ( / /~,/ /~, ,  . . . )  

( A L  A;:  . . . .  ) converges to f f = L~, 
E* 

~ : ( / / ~ 1 , / / =  . . . .  ) 

(A~I , A~2, . . . )  converges  to 

h: (//3, H=, . . . )  
( A L  A;~ . . . .  ) 

Y S = L ~ ,  
E* ~2 

converges to S S = L~, 
E* ~a 

Consider now the sequence ( S S, ~ Y, ""). Here f f < ~ y < . . . .  
E* E* E* E* 

I f  this sequence is unbounded then, by the additivity of Lebesgue 
area, the Lebesgue area of S is infinite. 
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Now suppose that  the sequence (~ S, ~ ; , . . . )  is bounded. Then 
E* E* 

this sequence converges to a real number. Since the Lebesgue integral 

~r exists, the sequence (.f ], ~ ] , . . . )  converges to 
E E* E* 

I I Vl+fx+g 
E 

We now wish to set up a regular sequence of polyhedra (ll~, Hi,  . . .  ) 
* $ 

inscribed on S such that  the corresponding sequence (A D A~, . . . )  con- 
verges to the Lebesgue area of S. 

//~ is built from Hll by merely adjoining a polyhedron (having 

no face parallel to the z-axis) on E --  E~*. H i is built from 1/23 by merely 

adjoining a polyhedron (having no face parallel to the z-axis) on E--E~*, 

etc. Since the sequence ( ~ ~, ~ ~, . . . )  converges td-.~ S~r 
E* E* E 

the sequence (A 1,* A~,* .. . ) also converges to ~ ] % / l + / ~ + / y  . 2  
E 

Since the corresponding sequence of piecewise linear functions of x 
and y converges uniformly to S, it follows by (4) of [10] that  this limit 
of (A~, As, . . . )  is the Lebesgue area of S. 

The identical procedure followed in the case where the sequence 
( ] ~, ~ ~, . . .  ) is unbounded yields the limit ~ which is the Lebesgue 

E* B* 

area of S. 

We now consider the case where the set E i is of positive outer Le- 
bcsgue measure. For this we have the following theorem. 

Theorem 7. Let S = ](E) be qp/. I / the  set E i o/the irregular points 
o] E is o] positive outer Lebesgue measure, then the Lebesgue area o / S  is 
infinite. 

Proo]: We make use of an easily proved lemma. 

Lemma 4. At each point Q o] E~, one o] the two partial derivatives 
ai(Q) ~/(Q) 

~-~-- and ~ y  does not exist finitely (i] it exists at all). 

To proceed to the proof of the theorem, suppose that  S is of finite 
Lebesgue area. Then, by a well known theorem [11], / is finitely partially 
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differentiable almost everywhere on E. This contradicts the fact tha t  E~ 
is of positive outer Lebesgue measure. 

We now consider the case where S = fiE) is not qp/. There are two 
subcases: 

1. The set E* of the points P of E for which D(P) ~= 0 is of Lebesgue 
measure zero. For this we have the following theorem. 

Theorem 8. Let S : / ( E )  be not qp/. Let E* be o/Lebesgue measure 
zero. Then there exists a regular sequence (II~, 11~ . . . .  ) o/ polyhedra 
inscribed on S such that the corresponding sequence (A 1, A*2 . . . .  ) o/poly-  
hedral areas converges to the Lebesgue area o /S ,  whether this be/inite or 
infinite. 

Proo/: The proof is similar to that  of Theorem 6. 

We now take  up case 2. 

2. The set of E* is of positive Lebesgue outer measure. For this we 
have the following theorem: 

Theorem 9. Let S = /(E) be not qp/. Let E* be the set o/points P o / E  
/or which D(P) ~ O. I / E *  is o/positive Lebesguc outer measure, then 
the Lebesgue area o~ S is infinite. 

Proo/: We make use of two lemmas. 

Lemma 5. There exists 6, ~ > O, such that the set Eo = {All P ~ E* 
such that D( P) > 6 } is o/positive outer Lebesgue measure. 

1 
Proo]: Let  6, ---- - for each positive integer n. Then E * =  0 E~.  I f  each 

n n = l  

g~, is of zero outer Lebesgue measure, then each E~, is Lebesgue mea- 

surable and its Lebesgue measure is zero. Since Lebesgue measure is 
completely additive, it follows that  E* is measurable and its Lebesgue 
measure is zero. Hence, its outer Lebesgue measure is zero. This contra- 
dicts the hypothesis tha t  E* is of positive outer Lebesgue measure. 

Lemma 6. At  each point Q o] E* one o/the two partial derivatives, 

~-~ and ~y does not exist ]initely (i/ it exists at all). 

This lemma follows easily from the following elementary geometric 
proposition: 
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For  each a, 0 < a ~_~ ~, there exists fl > 0 such tha t  if two planes 

have a dihedral angle greater than  a, then either the angle between their 

traces on the xz  plane or the angle between their traces on the yz plane 

is greater t han  ft. 

We now proceed to the proof of the main theorem. 

Suppose tha t  S is of  finite Lebesgue area. Then, by  a well-known 

theorem [11], / is finitely part ial ly differentiable on E almost every- 

where. This contradicts  the fact  t ha t  E* is of positive Lebesgue outer 

measure. Hence S is of infinite Lebesgue area. 

The proofs of  Theorems 6 - -9  const i tu te  a constructive proof  of  the 

val idi ty of  the GeScze conjecture. 

The foregoing theory  constitutes a geometric t heo ry  of the area of 

a non-parametr ic  surface. We have shown that ,  for non-parametr ic  
surfaces, this theory  is total ly  equivalent to the  analytic theory  of 

Lebesgue. I t  m a y  thus be looked upon as a geometric realization of  the 
Lebesgue theory  for such surfaces. 

In  this paper  we have no t  exploited the fact  t ha t  we permit  our 

polyhedra to have some faces which are parallel to  the z-axis. We shall 
do so in our t rea tment  of the parametr ic  surfaces. 
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