Abel's Test, Uniform Version

February 13, 2011

Abel's test has a uniform version. First we modify the statement of Abel's lemma Lemma 1. Suppose $\sum b_k$ converges. Let $B_k = b_k + b_{k+1} + b_{k+2} + \dots$ Then

$$a_n b_n + \dots + a_{n+k} b_{n+k} = B_n a_n + B_{n+1} (a_{n+1} - a_n) + \dots + B_{n+k} (a_{n+k} - a_{n+k-1}) - B_{n+k+1} a_{n+k}.$$
 (1)

$$a_{n}b_{n} + \dots + a_{n+k}b_{n+k} = a_{n}(B_{n} - B_{n+1}) + \dots + a_{n+k}(B_{n+k} - B_{n+k+1})$$

= $B_{n}a_{n} + B_{n+1}(a_{n+1} - a_{n}) + \dots + B_{n+k}(a_{n+k} - a_{n+k-1}) - B_{n+k+1}a_{n+k}.$

Theorem 1. Suppose $\sum_{1}^{\infty} b_n(x)$ converges uniformly on S and that $\{a_n(x)\}$ is a monotone uniformly bounded sequence. Then $\sum_{1}^{\infty} a_n(x)b_n(x)$ converges uniformly on S.

Proof. We show that $\sum_{n=1}^{n+k} a_j(x)b_j(x)$ is uniformly small if n is large enough. Using the notation of Lemma 1 let n be so large that $|B_n(x)| \leq \epsilon$ for all $x \in S$ and let $|a_n(x)| \leq M$ for all $x \in S$. To be explicit, assume $a_n(x)$ is increasing. By (1)

$$\begin{aligned} |a_n b_n + \dots + a_{n+k} b_{n+k}| &= |B_n a_n| + |B_{n+1} (a_{n+1} - a_n)| + \dots + |B_{n+k} (a_{n+k} - a_{n+k-1})| + |B_{n+k+1} a_{n+k}| \\ &\leq |B_n a_n| + |B_{n+1} (a_{n+1} - a_n)| + \dots + |B_{n+k} (a_{n+k} - a_{n+k-1})| + |B_{n+k+1} a_{n+k}| \\ &\leq \epsilon M + \epsilon (a_{n+k} - a_n) + \epsilon M \\ &\leq 4M \epsilon. \end{aligned}$$

Corollary 1. (Abel's limit theorem)

Suppose $\sum a_n$ converges. Then $\sum a_n x^n$ converges uniformly on [0, 1] and hence to a continuous function f(x). Consequently $\lim_{x\to 1^-} \sum a_n x^n = \sum a_n$.

Dirichlet's test also has a uniform version.

Theorem 2. Suppose $\sum b_k(x)$ is uniformly bounded on S, and that $\{a_n(x)\}$ tends monotonely and uniformly to 0 on S. Then $\sum a_n(x)b_n(x)$ converges uniformly.

Proof. Let $B_n = b_1 + \cdots + b_n$. As in Lemma 1 check that when $n \ge 2$

$$a_n b_n + \dots + a_{n+k} b_{n+k} = -B_{n-1} a_n + B_n (a_n - a_{n+1}) + \dots + B_{n+k-1} (a_{n+k-1} - a_{n+k}) + B_{n+k} a_{n+k}.$$

By uniform boundedness $|B_n(x)| \le M$ for all n ; and if $n \ge N$, $|a_n(x)| \le \epsilon$.

$$\begin{aligned} |a_n b_n + \dots + a_{n+k} b_{n+k}| &\leq |B_{n-1} a_n| + |B_n (a_n - a_{n+1}) + \dots + B_{n+k-1} (a_{n+k-1} - a_{n+k})| + |B_{n+k} a_{n+k}| \\ &\leq M \epsilon + M |a_n - a_{n+k}| + M \epsilon \\ &\leq 4M \epsilon. \end{aligned}$$