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1. Preliminaries

1.1. Introduction. The explicit purpose of this article is to illustrate the far-reaching
strength of the Baire Category Theorem. However, there is, as always, a more subtle
purpose: to illustrate the elegant manner in which different areas of mathematics find
themselves unreasonably connected with each other, in ways we cannot always fathom.
The inspiration for this article came when the author discovered an interesting appli-
cation of the theorem in the question of convergence of Fourier Series (cf. Theorem
6, section 2). The first section of this article is meant to familiarize the reader with
Baire spaces, and present the main theorem. The second section is based largely off of
examples and theorems from Dugundji and Folland [(6), (4)], the third is pulled from a
paper by Blass and Irwin (2), and the fourth is an outline of a paper by Bagemihl and
Seidel (1). Throughout, the author has made additions, small improvements, and slight
generalizations of results, but the bulk of the paper remains the work of much more
talented mathematicians, and the author would like to thank them for their wonderful
work.

At the heart of it, the Baire category theorem is a guarantee about the size of certain
topological spaces. On the surface, it looks like a useless and intuitive observation, but,
with only a bare (Baire?) minimum of cleverness, we can use this tool to prove that
certain classes of objects must exist. the trick is to show that the set of all objects that
do not have the desired property is “small, in a sense that will be made precise, and
this will imply that the set cannot occupy the whole space. Indeed, the notion of size
prescribed in the theorem is wholly new, independent of concepts of measure and slightly
removed from the ideas of density within a set. Without further delay, then, we proceed
to the development of the main theorem.

1.2. Spaces and categories. The following definitions will be useful in the statement
of the theorem.

Definition. A topological space is a set, X, together with a family of subsets, T , called
the topology on X, that satisfies the following properties.

i. X,∅ ∈ T .

ii. If A,B ∈ T , then A ∩B ∈ T .
1
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iii. For any family {Aσ}σ∈Σ of sets in T ,
⋃
σ∈ΣAσ ∈ T .

We call the members of T the open sets in X, and define the closed sets of X to be the
complements of the open sets. Given any A ⊂ X, A, the closure of A, is the intersection
of all the closed sets containing A, and Int A, the interior of A, is the union of all the
open subsets of A. When the topology is understand, we will denote the topological
space simply by X, otherwise we will use the standard (X, T ).

Definition. A set, A, is dense in a topological space X if A = X. It is somewhere dense
if Int A 6= ∅, and it is nowhere dense if Int A = ∅. (Note that the order of operations
here is important, the rationals are dense in the reals but Int Q = ∅). A metric space
with a countable, dense subset is called separable.

Definition. A metric space is a set M together with a metric d : M ×M → R that
satisfies

i. d(x, y) ≥ 0, and d(x, y) = 0 iff x = y.

ii. d(x, y) ≤ d(x, z) + d(z, y).
Open and closed sets are defined as in Euclidean space, relative to this metric, in terms

of open balls. It is easily seen that every metric space is a topological space, though not
all topologies can be generated by a metric. A metric space is called complete if every
Cauchy sequence converges, and a topological space is called topologically complete if it
is homeomorphic to a complete metric space.

Examples.
• The family of subsets, H, of R defined as all finite intersections and arbitrary

unions of half-open intervals of the form [a, b) is a topology on R. However, (R,H)
is not metrizable. It is an otherwise very nice space; it has a countable dense
subset, every pair of disjoint closed sets (including points) can be separated by
disjoint neighborhoods and also by functions. In other words, it is what’s called
separable and a perfectly normal Hausdorff space.
• Every subset of a topological space naturally inherits a topology; a set is open

in the subset if it is the intersection of an open set in the larger space with the
subset. So, given the standard topology on C, the set S1 ⊂ C is a topological
space. Similarly, we can see that it is a complete metric space if we restrict the
metric function to S1.
• The set Zℵ0 of infinite sequences of integers is a complete metric space under

the metric ρ(x, y) = 2−n where n is the first number with x)n 6= yn. This set is
also a group under componentwise addition, and this is not just a trivial obser-
vation. Often topological spaces can be endowed with other structures resulting,
occasionally, in an intertwining between the different structures therein. Indeed,
we will come back to this example in a later section, and see that its topological
structure gives rise to some algebraic properties that might have otherwise gone
unnoticed.

We are now ready to state and prove the Baire category theorem, which comes as a
direct result of the definition of a complete metric space. The reader would do well to
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remember the elementary nature of this result in the sequel, as it only makes the vast
applications of this theorem that much more impressive.

Theorem 1 (Baire Category Theorem). Let X be a complete metric space. Then
(a) the countable intersection of open, dense sets is dense, and (b) X is not a countable
union of nowhere dense sets.

Proof. Let {An} be a sequence of open dense sets in X and A =
⋂∞

0 An. We note that
an equivalent formulation of a dense set is that it intersects every open set. With this
in mind, we choose W ⊂ X nonempty and open, and show that W ∩ A 6= ∅. The idea
behind the proof is to construct a Cuahcy sequence which converges to a point that must
be in all of the partial intersections, and thus in the infinite intersection. Since A0 is open
and dense, W ∩ A0 is nonempty and open, so we can choose a point, x0, and a radius,
r0 ∈ (0, 1), so that B(x0, r0) ⊂ W ∩ A0. In general, we note that, having chosen xi and
ri for i < n, An ∩ B(xn−1, rn−1), because An is dense. Furthermore, this intersection
is open and nonempty, so we can choose xn ∈ An ∩ B(xn−1, rn−1) and rn ∈ (0, 2−n) so
that B(xn, rn) ⊂ An ∩ B(xn−1, rn−1). But now we have our Cauchy sequence because,
for n,m > N , xn, xm ∈ B(xN , rN ) and rn → 0. This implies that x = limxn exists, and,
by construction

x ∈ B(xn, rn) ⊂ An ∩B(x0, r0) ⊂ An ∩W
for every n, so we are done. The second part follows quite easily, because if {En} is a
sequence of nowhere dense sets, then {En

c} is a sequence of open dense sets. But then⋂
En

c 6= ∅, so
⋃
En ⊂

⋃
En 6= X. �

This inspires the following definitions.

Definition. A subset, M , of a topological space is meager (or of the first category) if
it is the countable union of nowhere dense sets. If a set is not meager it is of the second
category. The complement of a meager set is called residual.

Definition. A topological space, B, is a Baire space if it is not the union of any count-
able collection of nowhere dense sets (so it is of the second category in itself).

So the Baire category theorem says that every complete metric space is a Baire space.
This is, however, not a necessary condition for a topological space to be a Baire space.
There are spaces which are not even metrizable that are Baire spaces. (Indeed, the other
main statement of Baire’s theorem is for locally compact Hausdorff spaces, and yet there
are Baire spaces which are neither). It should be quite evident that the Baire category
theorem should have a lot to say about purely topological questions, and these will be
the first few applications shown here.

Examples.
• Assign an integer, n, to each real number. Let An = {x ∈ R : x 7→ n}, then

R =
⋃
An, so one of the An’s must be somewhere dense.

• A countable union of nowhere dense sets can still be dense. For example Q =⋃
{rn}, where rn is an enumeration of the rationals, but the rationals are dense

in the reals. Indeed this is true for any separable metric space with no isolated
points.
• The product of any family of Baire spaces is a Baire space.
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• A countable intersection of open sets is called a Gδ set (in the terminology of
Borel sets). In a complete metric space, any countable intersection of dense Gδ
sets is dense. Because Gδ =

⋂
An and Gδ ⊂ An, so the An’s are open and dense,

and a countable intersection of a countable intersection is countable. This holds,
in fact, for any finite iteration of this process.
• Let rn be an enumeration of the rationals, and let an,m = 1

2n+m . Then R =⋂
m

⋃
n(rn − an,m, rn + an,m) is certainly residual, because it’s complement is a

countable union of meager sets (use DeMorgan’s laws), which is meager. On the
other hand, the Lebesgue measure of this set is 0, because, by upper continuity
of the measure, µ(R) = limm→∞ µ(

⋃
(rn − an,m, rn + an,m) = 0.

Proposition 1. If a complete metric space, X, has no isolated points, then it is un-
countable.

Proof. For suppose that it were countable. Every singleton in X is closed with empty
interior, because it is nonisolated, so every singleton is nowhere dense in X. But then
X =

⋃
x∈X{x}, so that X is meager in itself. But this contradicts Baire’s theorem. �

Corollary. R and the Cantor set are uncountable.

Proposition 2. For any Baire space, B, if {fα} is a family of continuous, real-valued
functions, and M(y) = supα{fα(y)} is finite for all y, then M is uniformly bounded on
some open set.

Proof. Consider An = {y : M(y) ≤ n}, for n ∈ N. Each An is closed, and every y in
B must be in one of the An’s by assumption. Since An is a countable, closed covering
of B, one of the An’s must contain an open set, by Baire’s theorem, which is what we
wanted to show. �

2. Applications in Real and Functional Analysis

2.1. Subsets of C(I). Mathematicians in the early days of analysis used to underes-
timate the depth of the universe they had created. But then, just as the concept of
what a “function” is began to develop, pathological and counter-intuitive results started
popping up everywhere. There seems to be a history of this throughout mathematics,
where we discover that the nice objects we are used to are not the only ones out there.
In fact, this result is usually paired with, “most of the things out there are not nice.”
Ever since the Pythagorean fantasy of the commensurable was shattered by

√
2, we have

been constantly surprising ourselves with the size of the set of objects we can never hope
to grasp.

Examples.
• As we saw in the first section, R is uncountable, whilst Q is countable. So, just

to stick it to Pythagoras, “most” numbers are irrational.
• In fact, we can say even more than this. A number, like

√
2, is called algebraic

if it is the solution to a polynomial equation with rational coefficients. But alas,
notice that, if we denote p(x) = anx

n + · · ·+ a0, then

{p(x) : |n|+ |an|+ · · ·+ |a0| < k}, k ∈ N
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is countable for every k. As a consequence, the union of all of these sets is
countable- but surely this encompasses all of the polynomials with rational coef-
ficients. And so, we find that “most” numbers are transcendental- not a solution
to any rational polynomial.
• To take an example from set theory, we know that the “set of all sets” is too

large to be a set! Indeed, if such a set, call it U , existed, then we could consider
a subset of U defined by A = {x ∈ U : x is not a member of itself}. But then we
ask, “Is A in A?” Well, if it is not in A, then, by construction, it must be. On
the other hand, if it is in A, then it can’t be! That being said, every set that any
working mathematician would ever possibly need, or could even imagine, can be
found in a couple of iterations of the power set past the ω’th iteration of the
power set on ∅. (So, P (P (· · ·P (P (∅)) · · · )), where there are about ω+ 12 P ’s).
And that is a, relatively, small set.
• There are nonmeasurable sets.

In this section, we give a few of the classical results in this spirit- though a constructivist
would probably cringe at these proofs.

Proposition 3. The set of everywhere continuous, nowhere differentiable functions
forms a residual set in C(I).

Proof. We construct continuous functions with infinite right derivatives at every point.
Define

An =
{
f ∈ C(I) : ∃x ∈

[
0, 1− 1

n

]
so that, for all h ∈

(
0,

1
n

)
,

∣∣∣∣f(x+ h)− f(x)
h

∣∣∣∣ ≤ n}
for every n. Certainly, if a function is differentiable at a point, it must belong to one
of the An. So we wish to show that there are continuous functions outside of the
union of all of these sets. Of course, it suffices to show each is closed with no interior
points. I claim that if {fm} is a uniformly convergent sequence of functions in An,
then the limit is also in An. Indeed, define M(m,h) = minx∈[0,1−(1/n)]

∣∣∣fm(x+h)−fm(x)
h

∣∣∣.
This function is continuous, by the uniform convergence of the functions, and we know
that limm→∞ lim suph→0M(n, h) ≤ n. By some elementary considerations, and relying
heavily on the uniform convergence of the function, we can interchange the limiting
operations and preserve the inequality, getting lim suph→0M(∞, h) ≤ n, so the limit
of the sequence is in An. This means that An is closed. It remains to show that
the interior of An is empty. But take any function, f ∈ An, and any ε > 0. I can
uniformly approximate this function by a continuous function made up of finitely many
line segments each with slope ±2n. Indeed, picture an ε band around the graph of the
continuous function (or, even better, a smooth subband therein), and, beginning at the
left, bottom endpoint, draw a line of slope 2n until it intersects the top band. Continue
by drawing a line beginning at that new point of slope −2n and terminating at the
bottom band, etc. This process cannot continue indefinitely due to the compactness of
the interval. The function is certainly continuous, and it is in Acn. But ε was arbitrary,
so no point of An is an interior point. The theorem then follows. �

Constructive example. Let f(x) =
∑∞

0 2−n cos (20nπx). Notice that∑
|2−n cos (20nπx)| ≤

∑
|2−n| < ∞, so, by the Weierstrass M-test, we have uniform
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and absolute convergence. Furthermore, f is continuous because its partial sums are. It
can be shown, however, that this function is nowhere differentiable (cf. (8), for one).

So the reader has certainly rid themselves of any hopes to guarantee smoothness in
continuous functions. But what about guaranteeing smoothness in... smooth functions?
If given a smooth function, can we guarantee that this function is representable, at least
somewhere, as the sum of its Taylor series? The answer, sadly, is no. But first, let’s
make sure that we’re working on a Baire space.
C∞ is a topological space, and we can attach to it the following metric:

d(f, g) =
∑

min [2−n, ‖f (n) − g(n)‖]

It follows from completeness of I and standard theorems in analysis that this is a com-
plete metric, and we now use it to prove our result.

Proposition 4. There exists a residual set of f ∈ C∞(I) that are nowhere analytic.

Proof. By the Cauchy-Hadamard formula for the radius of convergence of a power series,
if f is analytic at a, it must be the case that

sup{ k

√
|f (k)(a)/k!|} <∞

So we let
T (a; c) = {f ∈ C∞ : ∀k, |f (k)(a)| ≤ k!ck}

If f is analytic at a, it must lie in one of these T (a, c). But now notice that any function
that is analytic at a point is analytic at a neighborhood of a point, so if a function is not
analytic on all of the rationals, it is not analytic anywhere. With this in mind we note
that we can express all the analytic functions as a subset of

⋃
{T (a, c) : a ∈ Q, c ∈ N}.

All we have to do now, thanks to Baire, is show that each of these is nowhere dense.
Notice that each is closed, because T (a, c) =

⋂
k{f ∈ C∞ : |f (k)(a)| ≤ ckk!} and and

intersection of closed sets is closed. The proof that each set also has empty interior is
due to H. Salzamann and K. Zeller. Given f ∈ T (a, c), and any B(f, 2ε), choose an n
so that

∑∞
n 2−i < ε (which we can do because the tail must go to zero). Then select a

b > 2 so that εbn > (2n!)c2n. Define a function

s(x) = f(x) + εb−n cos b(x− a)

then s is inifnitely differentiable. Furthermore, sup{|f (k)(x)− s(k)(x)|, x ∈ I} =
‖f (k) − s(k)‖ ≤ εbk−n < ε2k−n, for every k < n, so we know that s ∈ B(f, 2ε). On the
other hand, |s(2n)(a)− f (2n)(a)| = εbn > (2n)!c2n, so s /∈ T (a, c). �

2.2. Banach spaces.

Definition. A norm on a vector space X over a field K is a function ‖ · ‖ : X → R+

that satisfies

i. ‖x+ y‖ ≤ ‖x‖+ ‖y‖, x, y ∈ X.

ii. ‖αx‖ = |α|‖x‖, x ∈ X and α ∈ K.
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iii. ‖x‖ = 0 iff x = 0.
Notice that every normed linear space has with it a metric defined as d(x, y) = ‖x−y‖.

It is easy to see that this satisfies all the properties of a metric. When it so happens
that the space is complete with respect to the metric induced by its norm, we call the
space a Banach space.

Definition. A linear map T : X→ Y between two normed linear spaces is called bounded
if there is some C ≥ 0 such that ‖Tx‖ ≤ C‖x‖ for every x ∈ X. Notice that this is much
different from the normal notion of boundedness- as it should be, because the only
linear map bounded in the usual sense would be the zero map. We denote the space
of all bounded linear maps between X and Y by L(X,Y), and we define a norm on this
space as follows

‖Λ‖ = sup
{
‖Tx‖
‖x‖

: x 6= 0
}

The reader can verify that this does, in fact, satisfy the properties of a norm. Also, as a
matter of convention, when Y = R or C, we call the map a linear functional. Also, the
reader may verify that the following are equivalent for linear maps on Banach spaces;
T : T is bounded, T is continuous, T is continuous at a point.

Definition. A map f : X → Y between two topological spaces is called open if the
image of any open set is open.

Definition. A map T : X→ Y between is called closed if the graph of f , Γ(f) = {(x, y) :
y = f(x)} is a closed subspace of X× Y.

Examples.

• All Euclidean spaces are Banach. So is the set of continuous functions on R with
the uniform norm, and so is the set of analytic functions on C with the uniform
metric.
• Given any continuous function K : [a, b] × [c, d] → R, the linear operator de-

fined by (Lf)(y) =
∫ b
a K(x, y)f(x) dx is bounded and continuous on the domain

C([a, b]).
• Given any Banach space of functions, the evaluation operator πx(f) = f(x) is

bounded and continuous.

Theorem 2 (The Open Mapping Theorem). Every surjective, bounded linear map
between Banach spaces is open.

Proof. Denote by Bk(0) the open ball of radius k ∈ N around 0 in X. Certainly it is true
that X =

⋃
kBk(0). Then, since T is surjective,

Y = T (X = T (
⋃
Bk(0) =

⋃
kT (B1(0)).

Now, Y is complete, so one of these sets must be somewhere dense. But if one of these
sets is somehwere dense, then certainly kT (B1(0)) = kT (B1(0)), so that T (B1(0)) is
somewhere dense. Indeed, by the same logic, T (An) is somewhere dense for all An = {x ∈
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X : ‖x‖ < 2−n. Now we note the following result about the An’s. If {y ∈ Y : ‖y − y0‖ <
η} ⊂ T (A1), where y0 and η > 0 are fixed, then {y ∈ Y : ‖y‖ < η} ⊂ T (A1)−y0. Indeed,

{y ∈ Y : ‖y‖ < η} ⊂ 2T (A1) = T (A0).

But since T is linear, and scalar multiplication gives homeomorphic sets, we must have
that Cn = {y ∈ Y : ‖y‖ < η2−n} ⊂ T (An), for every n. I now claim that C1 = {y ∈ Y :
‖y‖ < η/2} ⊂ T (A0). Pick any y ∈ C, we approximate the desired preimage by partial
sums. We know that y ∈ T (A1), so there is an x1 ∈ A1 with ‖y−T (x1)‖ < η/4. But now
y − T (x1) lies in C2. Continuing recursively, given that y −

∑n−1
1 T (xk) ∈ Cn ⊂ T (An),

we pick an xn ∈ An so that ‖y −
∑n

1 T (xk)‖ < η
2n+1 . Since xn ∈ An, for every n, we

see that ‖xn‖ ≤ 2−n, so
∑
xn converges to some point x. Moreover, by continuity of

T , we have that T (x) = T (
∑
xn) =

∑
T (xn) = y (because their difference goes to 0

like 2−(n+1). But now that we have C1 ⊂ A0, we are done, because T commutes with
translations and dilations. �

Since open bijections are isomorphisms, the following is an immediate consequence:

Corollary. If X and Y are Banach spaces and T ∈ L(X,Y) is bijective, then T is an
isomorphism.

As a quick application of this result outside the area of functional analysis, we have
another negative result for those who had hoped for a universal comparison test for
absolutely convergent series.

Proposition 5. There is no slowest rate of decay of terms in a convergent series: that
is, there is no sequence {am} of positive real numbers such that

∑
an|cn| < ∞ iff {cn}

is bounded.

Proof. Denote by B(N) the set of all bounded, complex-valued function on N, and the
set of all absolutely summable sequences by L1(µ) (where µ is the counting measure).
Define a linear operator, T : B(N→ L1(µ) by Tf(n) = anf(n). Notice that this operator
is bounded by sup an. The set, A, of all f with f(n) = 0 on all but a set of measure zero
(finitely many n) is dense in L1(µ) by basic measure theoretic considerations. On the
other hand, when B(N) is given the uniform metric, this set is not dense. But, notice
that T is bijective, so it should be an isomorphism which preserves density, so we have
a contradiction. �

The remaining three functional analysis theorems are complete the standard and clas-
sical applications of the Baire category theorem, and they are quite powerful.

Theorem 3 (The Closed Graph Theorem). Every closed linear map between Banach
spaces is bounded.

Proof. Let π1 and π2 project Γ(T ) onto X and Y respectively. Both are bounded and
linear. Now we observe that X× Y is complete because both X and Y are. This implies
that Γ(T ) is complete because closed subspaces of complete spaces are complete. Since
projection functions are bijections, their inverses are bounded by the above corollary.
Consequently, T = π2 ◦ π−1

1 is bounded. �
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Theorem 4 (The Uniform Boundedness Principle). Suppose X and Y are normed
vector spaces and A is a subset of L(X,Y). If supT∈A ‖Tx‖ < ∞ for all x in some
nonmeager subset of X, then supT∈A ‖T‖ <∞.

Proof. We describe a family of subsets of X,

Dn =
⋂
T∈A

{x ∈ X : ‖Tx‖ ≤ n}

Certainly each of the Dn’s are closed. But, by hypothesis, one of these Dn must contain
a closed ball B(x0, r), and, consequently B(0, r) ⊂ E2n, because if ‖x‖ ≤ r, then x−x0 ∈
En so

‖Tx‖ ≤ ‖T (x− x0)‖+ ‖Tx0‖ ≤ 2n

Now, using the definition of the norm on an operator, we have that, for T ∈ A,
supT∈A ‖T‖ ≤ 2n/r, because ‖Tx‖ ≤ 2n when T ∈ A and ‖x‖ ≤ r. �

Theorem 5 (The Principle of Condensation of Singularities). Let X and Y be
Banach spaces and {Tjk} ⊂ L(X,Y). Suppose that, for every k, there is some x ∈ X such
that sup{‖Tjkx‖ : j ∈ N} =∞. Then there is a residual set of x’s so that sup{‖Tjkx‖ :
j ∈ N} =∞ for all k.

Proof. Suppose that the set of all x such that sup{‖Tjkx‖ : j ∈ N} < ∞ for all k was
nonmeager. Then, for fixed k, supj ‖Tjk‖ < ∞, by the uniform boundedness principle.
But this cannot be, because there is some x where the supremum is infinite, by hypoth-
esis. Therefore the prescribed set must be meager, which means that its complement is,
by definition, residual. �

We turn, now, to an interesting question regarding Fourier series. In Théorie an-
alytique de la chaleur, where Fourier originally introduced his theory of trigonometric
series, he boldly stated that “every function may be represented this way.” Apparently
the mathematical community took that as a challenge and, in response, spent the next
century trying to figure out how to prove that statement. Of course, the biggest was
problem was... how do we state that statement in the first place? There was no formal
concept of function, or limits, or integrals. Fourier’s nonchalant challenge to the world
was, perhaps, the inspiration behind much of modern analysis. Riemann invented his
theory of integration to study certain trigonometric series, and Lebesgue did the same-
without which, measure theory would not be here. Even our notions of the infinite, and
many developments in set theory, were originally developed by Cantor while he was...
studying the convergence of Fourier series! Carleson’s proof that the Fourier series for
every L2 function converges, almost everywhere, was the holy grail of convergence re-
sults. And yet, people used to think that the Fourier series’ of continuous functions must
converge, at least pointwise, everywhere. We now show that this is not true; indeed, the
set of all functions for which this is true is “small.” Déjà vu?

Theorem 6. There is a dense, Gδ set, F ⊂ C(S1) with the following property: For
every f ∈ F , the set of points where the Fourer series of f diverges is a dense Gδ subset
of R.
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Proof. We denote the nth partial sum of the Fourier series of f at a point x by

sn(f ;x) =
1

2π

∫ π

−π
f(t)Dn(x− t) dt

where Dn is the Dirichlet kernel, defined as

Dn(t) =
n∑
−n

eikt

Now, let’s fix x, and consider the family of linear functionals Θn : C(S1) → R, defined
as Θn(f) = sn(f ;x). Since the supremum norm ‖f‖∞on C(S1) gives rise to a complete
metric space, we know that C(S1) is a Banach space. Furthermore

‖Θn‖ = sup{‖Θn(f)‖ : ‖f‖ = 1} ≤ 1
2π

∫ π

−π
|Dn(t)|dt

Indeed, we can show that equality holds here. We can pick a Lesbesgue integrable
function, g(x− t), that is 1 when Dn(t) is positive, and −1 when Dn(t) is negative. This
is certainly the pointwise limit of a sequence of continuous functions, {fj}. We then use
the dominated convergence theorem to find

lim Θn(fj) = lim
1

2π

∫ π

−π
fj(x− t)(t)Dn(t) dt =

1
2π

∫ π

−π
|Dn(t)| dt

So that the ‖Θ‖ = (1/2π)
∫
|Dn(t)| dt. Now, we wish to show that the right hand side

diverges. We use the classical representation of the Dirichlet kernel, which the reader
may verify.

Dn(t) =
sin (n+ 1/2)t

sin (t/2)
Now then, with a quick nod to the so-called “Jordan Lemma,” we have that

1
2π

∫ π

−π
|Dn(t)| dt =

1
π

∫ π

0

∣∣∣∣sin (n+ 1/2)t
sin (t/2)

∣∣∣∣ dt
≥ 2
π

∫ π(n+1/2)

0
t−1| sin t| dt > 2

π

n∑
1

1
kπ

∫ kπ

(k−1)π
| sin t| dt =

4
π2

∑ 1
n
→∞

From this it follows that supn{‖Θn‖} =∞, so, applying the contrapositive of the uniform
boundedness principle, we have that; there is a residual set Fx, corresponding to each x
on the circle, so that every f ∈ Fx has a divergent Fourier series at x. Applying Baire’s
theorem one more time, taking the intersection of Fxi for a countable, dense subset xi,
we get a set F ⊂ C(S1) with all the desired properties. �

3. Applications to the Baer-Specker Group

In the first section, we introduced the set Π = Zℵ0 of all sequences of integers. This
is a group under componentwise addition, called the Baer-Specker group. At the same
time, it is a complete metric space. We remind the reader of the metric here:

ρ(x, y) = 2−n where n is the first number with xn 6= yn

Notice that if {xk} is Cauchy, then {xkn} is eventually constant for each n. Call the final
value yn, and now note that xk → y, because I can always choose k large enough so that



THIS AIN’T NO MEAGER THEOREM 11

the first N terms agree. Before going further, we define some group theoretic terms, and
a few more topological ones; the reader is not assumed to know anything beyond the
definition of a group, and even that is included here again for reference.

Definition. A group is a set, G, together with a binary operation, ∗, satisfying the
following properties: (i) there is an identity, e, (ii) the group operation is associative,
(iii) every element has an inverse. When the group operation is commutative, the group
is called abelian. A subgroup is a subset of G that is closed under the group operation.
A subgroup, S, of an abelian group, A, is called pure if all of the nth roots of elements
in A are also in S.

Definition. Given any subgroup, H, in G, we define a left coset of H to be g ∗ H =
{g ∗ h : g ∈ G, h ∈ H}, and a right coset similarly as H ∗ g. In abelian groups, these
collide and we can speak simply of cosets. The reader can verify that any two left (resp.
right) cosets are either identical or disjoint.

Definition. A homomorphism between a group (G, ∗) and a group (H,+) is a map,
h : G→ H with the property that h(x ∗ y) = h(x) + h(y). A bijective homomorphism is
called an isomorphism.

Definition. A Borel set is a set obtainable from open sets by repeated formations of
complements and countable unions. An analytic set is the image, under a continuous
function, of a Borel set in a complete separable metric space.

Examples.
• The set of all roots of unity is a group under complex multiplication. Any specific

set of nth roots of unity is a subgroup of this group.
• Gδ sets are Borel.
• The set of all 2 × 2 matrices with determinant 1 forms a group under multipli-

cation, known as the general linear group.
We proceed to some results. First note that the structure of the basic neighborhoods

of 0 is a subgroup
Vk = {x ∈ Π : xn = 0, n < k}

and all other k-neighborhoods of points are simply cosets of this subgroup. Now, to con-
nect the topology to the group structure, we will need to know that the homomorphisms
of Π are continuous with respect to the given topology. However, a stronger result can
be stated, and was proven by Specker in the 1950’s:

Theorem 7 (Specker’s Theorem). Every homomorphism h : Π → Z has the form
h(x) =

∑n
1 aixi, for some finite n and coefficients ai ∈ Z.

Now notice that a function into a product space (the cartesian product of topological
spaces) is continuous if and only if all of its components are. But surely, due to the
finiteness of the above sum, homomorphisms into Z are all continuous. The following
corollary is then immediate.

Corollary. Every homomorphism h : Π→ Π is continuous.

With this result, we show that since Π is large in a categorical sense, it must also be
large in a group theoretic sense.
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Theorem 8. The group Π is not a union of a countable chain or proper subgroups,
P0 ⊂ P1 ⊂ · · · ⊂ Π, each isomorphic to Π.

Proof. Suppose such a chain did exist, with a union equal to all of Π. By Baire’s
theorem, one of these subgroups must be somewhere dense, call it Pm. Therefore its
closure contains some open set, a+ Vk, for some a ∈ Π. We see that Vk ⊂ Pm. To that
end, fix z ∈ Vk, and map x 7→ x + z, which is a topological automorphism of Π. Then,
since (a+Vk)\Pm is meager, so is the homeomorphic image. Now, again applying Baire’s
theorem, (a+Vk)\Pm and z+((a+Vk)\Pm) cannot cover all of a+Vk. Therefore, there
is some x ∈ a + Vk that belongs to neither of these neighborhoods, and x ∈ Pm. Since
Vk is also a subgroup, we have that x− z ∈ Pm, and since Pm is a subgroup, z ∈ Pm as
desired. Now then, I claim that one of the Pn’s covers all of Π. Indeed, some Pl contains
finitely many unit vectors, e0, ..., ek−1 (where ei = {δij}j). Then certainly, Pn, where
n = maxm, l, contains all of these unit vectors and everything in the unit ball. But,
using finite group operations, every memeber of Π can be produced from these objects,
so Pn = Π, which is a contradiction. �

The proof of this theorem did not rely at all on the fact that each Pn was isomorphic
to Π except insofar as to show that each one was analytic. So this corollary follows
easily:

Corollary. Π is not the union of a chain of countably many analytic, proper subgroups.

This is quite a strong statement, restricting the ways that we may represent Π in some
manner by chains of subgroups. It means that Π is quite large in several senses of its
structure. We turn, now, to a proper subgroup of Π, which we will call D; the set of all
x ∈ Π such that, for each positive integer q, all but finitely many terms of x are divisible
by q. We can actually represent this subgroup as a Borel set in Π like so;

D =
⋂
q

⋃
k

⋂
n≥k
{x ∈ Π : q divides xn}

Now, this subgroup is not large in the sense of Π, for I can represent it as the union of
a chain of proper subgroups, each isomorphic to D. Consider

Dk = {x ∈ D : xn is even for all n ≥ k}
Notice something quite nice that comes as a result of this: we know that D is not a
complete metric space. Indeed, if it were, then the proof of Theorem 8 would have gone
through almost verbatim. But the reason that D is not complete comes from purely
algebraic considerations. It is here where you can begin to see the deep bond between
algebraic and topological structures that live on the same space, and the beginnings of a
beautiful field known as algebraic topology. We now proceed to guarantee what little we
can about the relationship between chains of subgroups and D- we must add, however,
the must stronger assumption that the subgroups are pure.

Theorem 9. The group D is not the union of a countable chain of pure subgroups, each
isomorphic to D.

We leave the proof of this fact to the reader; though nontrivial, the proof is not
difficult, but takes a bit of space. (See (2) for a proof).
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4. Applications to Classical Function Theory

4.1. Short detour to Hausdorff spaces. Topological spaces, as discussed in the open-
ing section, provide a rich and varied set of spaces to study. At times, however, it is too
rich. There are spaces where limits are not unique, and which can be quite ugly in all
manner of ways. Hausdorff spaces are a bit calmer, by ensuring that there are sufficiently
many open sets, and second-countable Hausdorff spaces are even calmer, ensuring that
there are not too many open sets. When dealing with functions and analysis, it is most
natural to work on nice spaces like these. In fact, certain types of Hausdorff spaces are
nice enough to be Baire spaces, as we prove below.

Definition. A topological space, H, is Hausdorff if, given any two distinct points,
x, y ∈ H, there is a neighborhood of x, Ux, and a neighborhood of y, Uy, such that
Ux ∩ Uy = ∅.

Definition. A topological space, X, is compact if every open cover of X admits a finite
subcover. A space is locally compact if every point has a compact neighborhood.

Definition. A basis, {Bα, for a topological space, X, is a subset of open sets with the
property that every open set is a union of members of {Bα. If a topological space has a
countable basis, it is called second-countable.

Definition. A family of sets, F , in a space has the finite intersection property if⋂
F∈B F 6= ∅, for finite B ⊂ F .

Proposition 6. A space is compact iff every closed family of subsests, {Tα}, with the
finite intersection property satisfies

⋂
α Tα 6= ∅.

Proposition 7. Every point in an open subset, U , of a locally compact Hausdorff space
has a compact neighborhood, Nx, with Nx ⊂ U .

Theorem 1′ (Baire Category Theorem). Every locally compact Hausdorff space, H,
is a Baire space.

Proof. Suppose I have a countable collection of dense, open sets {An}. Given an arbitrary
open set G ⊂ H, I wish to show that it intersects the intersection of all of the An’s.
A0 ∩ G is open, so take x0 ∈ A0 ∩ G. Now, since H is locally compact and Hausdorff,
there is a compact neighborhood, Nx0 , of x0 so that Nx0 ⊂ A0 ∩ G. Having defined
Nxn−1 and xn−1, we define Nxn as follows: An∩ Int Nxn−1 is nonempty and open, so
there is an xn ∈ An∩ Int Nxn−1 , and a compact neighborhood, Nxn so that Nxn ⊂ An∩
Int Nxn−1 . The family of sets {Nxn} consists of compact sets, all contained inside one
large compact set, Nx0 . Furthermore, all finite intersections are nonempty, therefore,⋂
Nxn 6= ∅, so there is an x ∈ G ∩

⋂N
1 An for all n, which is what we wanted. �

Theorem 10 (Baire Variation). Let X be a non-empty, complete metric space. Let
{βn} be a countable family of subsets of X, and let N = (

⋃
βn)c. Suppose that the

following conditions are satisfied: (1) For every βn, if A is dense in an open set G, and
A ⊂ βn, then G ⊂ βn; and (1) For every βn, every nonempty open set in X intersects
βcn. Then there is a residual set, R ⊂ N ⊂ X.
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Proof. I claim that each of the βn is nowhere dense. For suppose it were dense in some
open set, then, by the first hypothesis, that open set would be entirely contained in
βn, which contradicts the second hypothesis. By Baire’s theorem,

⋃
βn 6= X, and the

complement of that union is residual. �

Theorem 11. Let H1 be Hausdorff, let H2 be Hausdorff and second-countable, and let
X be a complete metric space, all non-empty. Let H : x → 2H1, and denote by HG the
union of the Hg for g ∈ G. Suppose that (3) if the set D ⊂ X is dense in some nonempty
open set G, then HD is dense in HG. Furthermore, let f : H1 → H2 be continuous such
that (4) if G is a non-empty open subset of X, then f(HG) is dense in H2. Then we can
conclude that there is a residual set, R ⊂ X, so that, for every r ∈ R, f(Hr) is dense in
H2.

Proof. Let {Bn} be a basis for H2. Define βn = {x ∈ X : f(Hx)∩Bn = ∅}. Notice that
(1) follows from the continuity of f . indeed, if f(Hx) ∩ Bn = ∅ for every x ∈ D ⊂ G
in a dense subset of G, then we must have f(Hg) ∩ Bn = ∅ for all g ∈ G, otherwise,
by the openness of Bn, we could find an open set around g that’s not contained in
βn, contradicting the density of D. Then (4) implies (2), so the conclusion follows by
Theorem 10. �

Theorem 12. Let H be Hausdorff and second-countable, and X be a complete metric
space, both non-empty. Let {Bn} be a basis of H, and {fk} a sequence of continuous
functions each of which maps X into H. Suppose, further, that (5) for every non-empty
open set G ⊂ X, and every Bn, there is a k so that fk(G) ∩ Bn 6= ∅. Then there is a
residual set, R ⊂ X, so that, for every r ∈ R, {fk(r)} is dense in H.

Proof. We are set up to use Theorem 11. Let f be the identity and H1 = H2 = H. For
every x ∈ X, let Hs consist of the points fk(s) for all k. (3) is a consequence of the
continuity of each fk. To prove (4), let G and U be non-empty oepn subsets of X and
H, respectively. Now, HG =

⋃
fk(G), and U is the union of some collection of basis sets,

Bn, (4) then follows from (5). The theorem then follows from the preceding one. �

Theorem 13 (Diophantine Approximation). Let {tm} be an increasing sequence of
positive numbers tending to infinity. Then there is a residual set, R ⊂ R, such that, for
every r ∈ R, the set {tmr + j}, j ∈ N, is dense in R.

Proof. Let (a, b) be any open interval. Since tm → ∞, I can choose an m so that
tm(b− a) > 1, and, consequently, every real number can be written in the form tmx+ j
for some x ∈ (a, b), just by shifting over by the appropriate integer. If we now identify H

and X with R, in the notation of Theorem 12, and then let {Bn} consist of open intervals
with rational endpoints, and {fk} to be any arrangement of the sequence {tmx+ j}, as
a function of the real variable x, then the theorem follows from the preceding one. �

4.2. Cluster Sets and Meromorphic Functions.

Definition. Given a function, f : D → R, the cluster set of the function at a point,
z0 ∈ D, is the set of all points, w ∈ R such that there is some sequence of points zn → z0

with f(zn) → w. A cluster set is degenerate if it is a singleton, subtotal if it does not
contain all of R, and total if it is all of R. Clearly, every cluster set is closed.



THIS AIN’T NO MEAGER THEOREM 15

Definition. A Riemann surface, R, is a second-countable Hausdorff space with the
property that every point has a neighborhood that is homeomorphic to an open set in
C.

Definition. A quotient space of a topological space, T , and a subspace, S, denoted by
T/S, is the space obtained by equating all the points in S.

Examples.
• Define f(reiθ) on the unit disk as being 1 whenever r and θ are rational, and −1

otherwise. Then the cluster set at any point on the circumference is {1,−2}.
• Let f(z) = ei/|z|, then the cluster set at 0 is the unit circle.
• Let f(x) = sin 1/x, then the cluster set at 0 is the interval [−1, 1].
• The Riemann sphere, C∪∞ is, appropriately, a Riemann surface. At every point,

consider the hemisphere determined by that point. Clearly it is homeomorphic
to a disk in C. The Riemann sphere is a complete, separable metric space with
respect to the spherical metric, and it is compact so it is second-countable and
Hausdorff.
• If you take the unit square, I2 = [0, 1]2, and identify (x, 0) ∼ (x, 1), then you get

a cylinder as the quotient space. If you then identify (1, y) ∼ (0, y), you get a
torus. Tori are also Riemann surfaces.

The study of cluster sets began with Painlevé in 1895, when he introduced the notion
as a way of describing the behavior of an analytic function near a singularity. He did
this before the concept of measure was introduced, and so, was not able to gain the
kind of deep results that he had, no doubt, hoped for. Later, the ideas of cluster sets
were employed by Fatou and Carathéodory in the early 1900’s to prove some uniqueness
theorems and apply them to the study of differential equations. The study of cluster
sets is now firmly in the camp of classical analysis, and has probably been absent from
most graduate students’ curriculum since the late 1940’s. Of course, that doesn’t mean
the results weren’t interesting, and we present a few of them here as an illustration of
their connection with Baire’s category theorem. The next two theorems will be stated
for reference, without proof, but proofs can be found in (3)

Fatou’s Theorem on Radial Limits. If f is analytic and bounded on the unit disk,
then the radial limits f(eiθ) = limr→1 f(reiθ) exist for all points eiθ except, perhaps, for
a set of measure zero.

F. and M. Riesz’s Uniqueness Theorem. If f is analytic and bounded and if the
set of points eiθ with radial limits equal to 0 is of positive measure, then f is identically
zero in the disk.

Theorem 14. Let f be meromorphic on the unit disk and map onto some Riemann
surface, R. Suppose that the cluster set of f at every point on the unit circle is R. Then
there is some residual set, R ⊂ S1, so that the radial cluster set at every point r ∈ R is
R.

Proof. For every element, s = eiθ, in S1, let Hs be the radius terminating in that
point. Certainly, if D ⊂ S1 is dense in some open set G ⊂ S1, then HD is dense in
HG. Furthermore, given any open set G ⊂ S1, f(HG) is all of R, because a cluster
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set is invariant under restriction to a smaller open set. Thus, identifying H1 with the
unit disk, H2 with R and the complete metric space with S1, the theorem follows from
Theorem 11. �

Theorem 15. Let f be meromorphic on the unit disk and let its range be some domain
Ω ⊂ C∞. Suppose that the cluster set of f at every point of S1 is Ω. Then there is a
residual set, R ⊂ S1, such that the radial cluster set at every point of R is Ω.

Proof. This follows from the preceding theorem if we identify the boundary of Ω with a
single point and consider the quotient space Ω/∂Ω. This is then a Riemann surface and
the above applies. �

Theorem 17. Suppose one of the following is satisfied: (a) f is meromorphic on the
unit disk and has no radial limits on a set of positive measure in S1; or (b) f is a non-
constant meromorphic function on the unit disk and its radial cluster set on every point
in a set of positive measure on S1 contains a fixed constant c, finite or infinite. Then
there is some residual subset of S1, at each point of which, the radial cluster set of f is
the whole plane.

Proof. In view of Theorem 6, it suffices to show that the cluster set at every point of S1

is the whole complex plane. For the sake of contradiction, suppose that there is some
point z0 ∈ S1 with a subtotal cluster set. Since cluster sets are closed, this means that
there is some neighborhood, Ua of a finite point, a, which does not intersect f(Uz0 , where
Uz0 is some neighborhood of z0. Now, this means that g(z) = 1

f(z)−a is bounded and
analytic on Uz0 , and we can see that, by Fatou’s theorem, f(z) must posses radial limits
in points on a set of positive measure in S1 ∩ Uz0 . This contradicts (a), it remains to
contradict (b). But notice that, for (b), g(z)→ 1/(c− a) along every radius terminating
in a set of positive measure, and, by an obvious extension of the theorem of F. and M.
Riesz, g must be constant. But then f is constant, contradicting the hypothesis. �

Notice that we used very few properties of the unit disk in proving all of these the-
orems. Indeed, suppose we replaced the unit disk, in each of these theorems, by a
fundamental parallelogram. It is easy to see that all of these theorems still hold if we
consider a radius to be a line emanating from the center (the point equidistant from
every side) and terminating in a point on the side. Certainly the boundary of the par-
allelogram still forms a complete metric space, and so all of the above theorems hold
unchanged. In particular, this implies the existence, for every non-constant elliptic func-
tion, of a residual set of radii, on each of which the cluster set of the function is the
whole plane. Now we turn to a uniqueness theorem following from Theorem 7(b).

Corollary. If f is meromorphic on the unit disk and its radial cluster set contains some
constant c, finite or infinite, on a residual set of positive measure, then f(z) ≡ c.

Proof. For suppose not, then f satisfies condition (b) above, so every radial cluster set
on some residual subset of S1 contains the whole complex plane. But this cannot hold
if there is another residual set with only subtotal radial cluster sets and of positive
measure. �

At this point we might wonder how much we can get away with here. How large can
the set be where the meromorphic function has a total radial cluster set? The answer
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is, surprisingly, however large or small we wish. The proof of the following theorem uses
standard techniques in cluster set analysis, but would take us beyond the scope of this
paper. See (1) and (3) for more on this.

Theorem 18. Given any number µ ∈ [0, 2π], there is some meromorphic function, f ,
on the unit disk such that the set R of points on S1 where the radial cluster set is total
is of measure µ. In the case µ = 0, the R may be finite, countable, or uncountable.

5. Concluding Remarks

Hopefully the reader has been as pleasantly surprised as the author by the wide reach
of the Baire category theorem, and, indeed, mathematics in general. There has been
another theme, however, shown throughout this paper, and that is the motif of negative
results, alluded to in section 2. We hope that, instead of seeing these pathological
examples as a fault to mathematics, the reader views these counter-intuitive results as
a testament to the beautiful field that we have created. Indeed, is it not astounding
that a structure, built by concepts completely understood by mankind, can give rise to
objects more complex than we can fathom? We have stumbled upon a Pandora’s box,
and the author would not be at all surprised if the set of all mathematics we could ever
conceive is of first category in the set of all mathematics there actually is (not that this
is at all well-defined). If the reader is interested in further applications and connections
to the Baire Category Theorem, we note here two interesting facts. One is that there is
another characterization of meager sets in any topological space based on the existence,
or non-existence, of winning strategies for players of a “Banach-Mazur game.” This ties
Baire to yet another area of mathematics. As a final frontier in mathematical logic, we
find that the Baire category theorem is equivalent to a weak form of the Axiom of choice
called the “Axiom of Dependent choice, which states that: Given any nonempty set X
and any complete binary relation, R, there is a sequence {xn} ∈ X so that xnRxn+1

for every n ∈ N. We invite the reader to explore the aspects of choice in this axiom, and
look back upon the proof of Baire’s theorem to see where choice is used.

References

[1] Bagemihl, F. and W. Seidel, A General Principle Involving Baire Category with
Application to Function Theory and other Fields. The Institute for Advanced Study;
August 17, 1953

[2] Blass, Andreas and John Irwin Baer Meets Baire: Applications of Category Argu-
ments and Descriptive Set Theory to Zℵ0 , 1991

[3] Collingwood, E.F. and A.J. Lohwater The Theory of Cluster Sets Cambridge Tracts
in Mathematics and Physics, 1966

[4] Dugundji, James Topology Allyn & Bacon, 1964
[5] Folland, Gerald Advanced Calculus Prentice-Hall, 2002
[6] Folland, Gerald Real Analysis: Modern Techniques and Applications, John and Wiley

Sons, Inc., 1999
[7] Gemignani, Michael C., Elementary Topology Dover Publications, 1967
[8] Rudin, Walter Principles of Mathematical Analysis, McGraw Hill, 1976


