
University of Washington

Math 336 Term Paper

Graph Theory: Network Flow

Author:

Elliott Brossard

Adviser:

Dr. James Morrow

3 June 2010

Contents

1 Introduction . 2

2 Terminology . 2

3 Shortest Path Problem . 3
3.1 Dijkstra’s Algorithm . 4
3.2 Example Using Dijkstra’s Algorithm . 5
3.3 The Correctness of Dijkstra’s Algorithm . 7

3.3.1 Lemma (Triangle Inequality for Graphs) 8
3.3.2 Lemma (Upper-Bound Property) . 8
3.3.3 Lemma . 8
3.3.4 Lemma . 9
3.3.5 Lemma (Convergence Property) . 9
3.3.6 Theorem (Correctness of Dijkstra’s Algorithm) 9

4 Maximum Flow Problem . 10
4.1 Terminology . 10
4.2 Statement of the Maximum Flow Problem 12
4.3 Ford-Fulkerson Algorithm . 12
4.4 Example Using the Ford-Fulkerson Algorithm 13
4.5 The Correctness of the Ford-Fulkerson Algorithm 16

4.5.1 Lemma . 16
4.5.2 Lemma . 16
4.5.3 Lemma . 17
4.5.4 Lemma . 18
4.5.5 Lemma . 18
4.5.6 Lemma . 18
4.5.7 Theorem (Max-Flow Min-Cut Theorem) 18

5 Conclusion . 19

1

1 Introduction

An important study in the field of computer science is the analysis of networks. Internet
service providers (ISPs), cell-phone companies, search engines, e-commerce sites, and a va-
riety of other businesses receive, process, store, and transmit gigabytes, terabytes, or even
petabytes of data each day. When a user initiates a connection to one of these services,
he sends data across a wired or wireless network to a router, modem, server, cell tower, or
perhaps some other device that in turn forwards the information to another router, modem,
etc. and so forth until it reaches its destination. For any given source, there are often many
possible paths along which the data could travel before reaching its intended recipient. When
I initiate a connection to Google from my laptop here at the University of Washington, for
example, packets of data first travel from my wireless card to my router, then from my router
to a hub in the underworkings of McCarty Hall, then to the central servers of the University
of Washington, which transmit them along some path unknown to me until they finally reach
one of Google’s many servers 40 milliseconds later.

From any one source to an intended destination, however, there are often many different
routes that data can take. Under light traffic, the University of Washington might distribute
the task of sending its Internet users’ packets through just two or three servers, whereas
under heavy traffic it might use twice or three times as many. By spreading out the traffic
across multiple servers, the University of Washington ensures that no one server will bog
down with overuse and slow down the connection speeds of everyone using it.

The idea that there are many possible paths between a source and a destination in a network
gives rise to some interesting questions. Specifically, if the connection speed between every
two interlinked components is known, is it possible to determine the fastest possible route
between the source and destination? Supposing that all of the traffic between two components
was to follow a single path, however, how would this affect the performance of the individual
components and connections along the route? As hinted above, the optimum solution for the
fastest possible transmission of data often involves spreading out traffic to other components,
even though one component or connection might be much faster than all the others. In this
paper, we seek to build a framework in which we can precisely state these questions, and one
that will allow us to provide satisfactory answers.

2 Terminology

The study of networks is often abstracted to the study of graph theory, which provides many
useful ways of describing and analyzing interconnected components. To start our discussion
of graph theory—and through it, networks—we will first begin with some terminology. First
of all, we define a graph G = (V,E) to be a set of vertices V = {v1, v2, . . . , vm} and a set of
edges E = {e1, e2, . . . , en}. An edge is a connection between one or two vertices in a graph;
we express an edge ei as an unordered pair (vj, vk), where vj, vk ∈ V . If j = k, then ei is
called a loop. To illustrate these concepts, consider the following graph:

2

v1

v2

v3

v4

e2

e3

e4

e5

e6 e7

e1

If we let G denote this graph, then G = (V,E), where V = {v1, v2, v3, v4} and E =
{e1, e2, e3, e4, e5, e6, e7}. We can express the edges as e1 = (v1, v1), e2 = (v1, v2), e3 = (v1, v4),
e4 = (v2, v4), e5 = (v2, v3), and e6 = (v1, v4). Note that e1 is a loop, since it connects v1 to
itself.

This type of graph is also known as an undirected graph, since its edges do not have a direction.
A directed graph, however, is one in which edges do have direction, and we express an edge e
as an ordered pair (v1, v2). Remark that in an undirected graph, we have (v1, v2) = (v2, v1),
since edges are unordered pairs.

Sometimes it is convenient to think of the edges of a graph as having weights, or a certain
cost associated with moving from one vertex to another along an edge. If the cost of an
edge e = (v1, v2) is c, then we write w(e) = w(v1, v2) = c. Graphs whose edges have weights
are also known as weighted graphs. We define a path between two vertices v1 and vn to be
an ordered tuple of vertices (v1, v2, . . . , vn), where (vj, vj+1) is an edge of the graph for each
1 ≤ j ≤ n − 1. Note that in a directed graph, if the path (v1, v2, . . . , vn) connects the two
vertices v1 and vn, it is not necessarily the case that (vn, vn−1, . . . , v1) is a path connecting
them as well, since (vi, vi+1) 6= (vi+1, vi). Two vertices v1, v2 are said to be path-connected if
there is a path from v1 to v2. The total cost of a path is the sum of the costs of the edges,
so C =

∑n−1
j=1 w(vj, vj+1) is the cost of the path from v1 to vn.

3 Shortest Path Problem

A commonly occurring problem involving weighted graphs, both directed and undirected,
is to find the minimum cost necessary to move from one vertex to another; that is, to find
the shortest path between them. The most well-known algorithm for determining this path
is Dijkstra’s Algorithm, presented by Edsger Dijkstra in 1959, which actually solves the
more general problem of finding the shortest paths from a given vertex to all other vertices
under the restriction that edges have non-negative weights. In contrast, the A* Search
Algorithm finds the shortest path between any two given vertices in a weighted graph with
non-negative edge weights, and Ford’s Algorithm (sometimes credited as the Bellman-Ford
Algorithm) finds the shortest path from a given vertex to all other vertices in a weighted
graph without restriction on the sign of the edge weights. For the purpose of network flow,
we are concerned only with graphs that have non-negative edge weights, and prefer a solution
that solves the more general problem of shortest paths from one vertex to all other vertices.

3

For further reading, however, the reader may refer to [2] for an exploration of the A* Search
Algorithm or [4, p. 15] or [1, sec. 24.1] for an exploration of the Bellman-Ford Algorithm.

Before we present the steps and proof of Dijkstra’s Algorithm, we will first formulate a precise
statement of the problem we are attempting to solve. Let G = (V,E) be a weighted graph
with the set of vertices V and set of edges E, with each e ∈ E satisfying w(e) ≥ 0, and let
v1, v2 ∈ V such that v1 and v2 are path-connected. We will assume that G is directed; if it
is undirected, then consider the edge (u, v) to be the same as the edge (v, u). Which path
P = (w1, w2, . . . , wn) for w1 = v1, wn = v2 minimizes the sum C =

∑n−1
i=1 w(wi, wi+1)?

3.1 Dijkstra’s Algorithm

Let G = (V,E) be a directed weighted graph with the set of vertices V and the set of edges
E with non-negative weights as above, and let v1, v2 ∈ V such that v1 and v2 are path-
connected. We claim that the path P produced by the below algorithm has the lowest total
cost C of any possible path from v1 to v2.

1. Assign a distance value to every vertex. Where d denotes distance, set d(v1) = 0 and
d(v) = ∞ for all other v ∈ V .

2. Mark each vertex as “unknown”, and set the “current vertex” vc to be v1.

3. Mark the current vertex vc as known.

4. Let Nc = {v ∈ V | (vc, v) ∈ E and v is unknown} be the set of unknown neighbors of
vc. For each v ∈ Nc, let d(v) = min{d(v), d(vc)+w(vc, v)}. If the value of d(v) changes,
then set p(v) = vc. We will use p(v) to denote the vertex through which this one was
accessed.

5. Set vc = vd, where vd ∈ Nc has the property that d(vd) = min
v∈V

{d(v)}. If vd = v2, then

proceed to the next step; otherwise, return to step 3.

6. Let P be an ordered tuple of vertices currently consisting of the single vertex v2, and
let vc = v2.

7. Let Nc = {v ∈ V | (v, vc) ∈ E}, and let vd ∈ Nc such that for all v ∈ Nc, d(vd) ≤ d(v).
Insert vd at the front of P .

8. If vd 6= v1, then set vc = vd and return to step 7. If vd = v1 then we are done; P is the
lowest-cost path from v1 to v2.

Note that at step 5 of the algorithm, replacing the check for vc = v2 with the condition that
all vertices are known would allow the algorithm to continue until the shortest distance from
v1 to any any vertex is “known”. For this to be guaranteed to work, however, we would
need to add the restriction that there is at least one path from v1 to all other vertices, since
otherwise it would fail when there is no path from a known node to any of the unknown
nodes. As for whether terminating the algorithm when v2 is known is significantly faster
on average than allowing it to run until all vertices are known, Thomas Cormen [1, p. 492]
writes that “no algorithms for [the single-pair shortest path] problem are known that run
asymptotically faster than the best single-source algorithms in the worst case.”

4

We can also express Dijkstra’s Algorithm in pseudocode as follows. Some of the details of
this code borrow from [6, sec. 9.3].

1 Path dijkstra(Graph g, Vertex start , Vertex end) {

2 for each Vertex v in g {

3 v.dist = INFINITY;

4 v.known = false;

5 }

6

7 start.dist = 0;

8 start.known = true;

9

10 while(true) {

11 v = unknown Vertex with smallest distance

12

13 // if the shortest distance to the end vertex is known , exit the loop

14 if(v == end)

15 break;

16

17 v.known = true;

18

19 for each Vertex w where (v, w) is an edge {

20 if(v.dist + Cost(v, w) < w.dist) {

21 // update the distance to w

22 w.dist = v.dist + Cost(v, w);

23

24 // remember that we traveled through v to get to w

25 w.path = v;

26 }

27 }

28 }

29

30 // the shortest distance to the end vertex is known , so iteratively construct the path

31 // from end to start

32 Path p = new Path;

33 p.insertAtFront (end);

34

35 Vertex current = end;

36 while(current != start) {

37 // move to the next vertex on the shortest path to the starting vertex

38 current = current.path;

39 p.insertAtFront (current);

40 }

41

42 return p;

43 }

3.2 Example Using Dijkstra’s Algorithm

Here we will step through an example application of Dijkstra’s Algorithm. In this example,
we would like to find the shortest path between the vertices v1 and v8 in the pictured graph.
To show the process of the algorithm, we will use the value next to the name of each vertex
to denote its current distance d, and we will mark a vertex as known by displaying its label
in bold. For the sake of space, the value of p(v) is not shown. As each new vertex is marked
known, the distances of its neighboring vertices are updated to reflect the new possible path
to them.

5

v1 0 v2 ∞ v3 ∞

v4 ∞ v5 ∞

v6 ∞ v7 ∞ v8 ∞

3 4

1

4 2 5 1

2

5 1 3

1

(a) Set up distances

v1 0 v2 3 v3 ∞

v4 ∞ v5 ∞

v6 1 v7 ∞ v8 ∞

3 4

1

4 2 5 1

2

5 1 3

1

(b) v1 is marked as known

v1 0 v2 3 v3 ∞

v4 6 v5 ∞

v6 1 v7 ∞ v8 ∞

3 4

1

4 2 5 1

2

5 1 3

1

(c) v6 is marked as known

v1 0 v2 3 v3 7

v4 5 v5 8

v6 1 v7 ∞ v8 ∞

3 4

1

4 2 5 1

2

5 1 3

1

(d) v2 is marked as known

v1 0 v2 3 v3 7

v4 5 v5 7

v6 1 v7 ∞ v8 ∞

3 4

1

4 2 5 1

2

5 1 3

1

(e) v4 is marked as known

v1 0 v2 3 v3 7

v4 5 v5 7

v6 1 v7 ∞ v8 ∞

3 4

1

4 2 5 1

2

5 1 3

1

(f) v3 is marked as known

6

v1 0 v2 3 v3 7

v4 5 v5 7

v6 1 v7 8 v8 10

3 4

1

4 2 5 1

2

5 1 3

1

(g) v5 is marked as known

v1 0 v2 3 v3 7

v4 5 v5 7

v6 1 v7 8 v8 9

3 4

1

4 2 5 1

2

5 1 3

1

(h) v7 is marked as known

v1 0 v2 3 v3 7

v4 5 v5 7

v6 1 v7 8 v8 9

3 4

1

4 2 5 1

2

5 1 3

1

(i) v8 is marked as known

At this point, the algorithm would trace the shortest path from v8 back to v1, which in this
case is (v1, v2, v4, v5, v7, v9). As it turned out, the algorithm marked that every other vertex
was “known” before it marked v8 as known, so the algorithm explored every vertex possible
before proceeding. If the weight of edge (v5, v8) were exchanged with the weight of (v7, v8),
though, the algorithm would have marked v8 as known before v7 and hence proceeded to
constructing the shortest path without actually exploring every node.

3.3 The Correctness of Dijkstra’s Algorithm

We know turn our attention to a proof that Dijkstra’s Algorithm will succeed in finding
the shortest path in general. The idea for the following proof is similar to that presented
in [1, sec. 24.3]. To aid in the development of this proof, we will first define the function
δ : V × V → Z to be the minimum-cost path from its first parameter to the second (0 if the
two parameters are the same vertex), or ∞ if no path exists. We will also define Relax(u, v)
to be the operation of setting d(v) = min{d(v), d(u) + w(u, v)} and setting p(v) = u if d(v)
changed. What we would like to show is that for a starting vertex v1 and an ending vertex
v2, at the completion of Dijkstra’s algorithm we have d(v2) = δ(v1, v2). To do this, we will
first prove some lemmas concerning shortest paths and the relaxation of edges.

7

3.3.1 Lemma (Triangle Inequality for Graphs)

Let G(V,E) be a directed, weighted graph with non-negative edge weights, and suppose that
v1 ∈ V is the starting vertex of G, where there is at least one path from v1 to any other
vertex. Then for all edges (u, v) ∈ E, δ(v1, v) ≤ δ(v1, u) + w(u, v).

Proof: Let v ∈ V . Since there is path from v1 to v, there is a shortest path P from v1 to v,
the total cost of which is less than or equal to any other path from v1 to v. So if (u, v) ∈ E,
then the cost of any path from v1 to u and then from u to v is no less than the cost of P ,
and hence the shortest path from v1 to v that passes through u has at least as much cost as
P . In particular, δ(v1, v) ≤ δ(v1, u) + w(u, v), which is what we wanted to show.

3.3.2 Lemma (Upper-Bound Property)

Let G(V,E) be a directed, weighted graph with non-negative edge weights, and suppose that
v1 ∈ V is the starting vertex of G, where there is at least one path from v1 to any other
vertex. Initialize d(v1) = 0, d(v) = ∞ for v 6= v1. Then d(v) ≥ δ(v1, v) for all v ∈ V , and
this property holds even if we apply any sequence of operations Relax(vj, vk) to (vj, vk) ∈ E.
Furthermore, if d(v) = δ(v1, v) at some point in this sequence, then d(v) = δ(v1, v) after each
subsequent operation.

Proof: We will proceed by induction to show that the statement d(v) ≥ δ(v1, v) for all
vertices v ∈ V holds after each operation Relax(vj, vk) in the sequence.

Base case: Before any edges are relaxed, we have d(v1) = 0 ≥ δ(v1, v1) = 0. d(v) = ∞ ≥
δ(v1, v), since there is a path from v1 to v, so the statement holds.

Inductive step: Now assume that the statement holds for all operations Relax(vi, vj) in the
sequence prior to the operation Relax(vk, vl). We know that d(v) ≥ δ(v1, v) for all v ∈ V
prior to this operation by the inductive hypothesis, and since Relax(vk, vl) can only change
d(vl), we need only to show that d(vl) ≥ δ(v1, vl). Since d(vl) ≥ δ(v1, vl) before the operation
Relax(vk, vl) by the inductive hypothesis, suppose that Relax(vk, vl) changes the value of
d(vl). Then

d(vl) = d(vk) + w(vk, vl)

≥ δ(v1, vk) + w(vk, vl) (By the inductive hypothesis)

≥ δ(v1, vl), (By the Triangle Inequality for Graphs)

which completes the inductive proof.

Furthermore, at any step in the sequence of relaxations, if d(v) = δ(v1, v), then d(v) will
remain unchanged past that point. This follows from the fact that Relax(vj, vk) sets d(vk)
to the minimum of d(vk) and d(vj) +w(vj, vk), neither of which can be less than δ(v1, vk) by
the definition of δ, and relaxing the edge cannot increase d(vk).

3.3.3 Lemma

Let G(V,E) be a directed, weighted graph with non-negative edge weights, and let (u, v) ∈ E.
Then immediately after the operation Relax(u, v), we have d(v) ≤ d(u) + w(u, v).

8

Proof: Suppose that just before relaxing the edge (u, v), d(v) > d(u) + w(u, v). Then
d(v) = d(u) + w(u, v) afterward, so the desired inequality holds. Now suppose that d(v) ≤
d(u) + w(u, v) just before the edge (u, v) is relaxed. Then neither d(u) nor d(v) changes
during the operation, so d(v) ≤ d(u) + w(u, v) afterward as well, which is what we wanted
to show.

3.3.4 Lemma

Let G(V,E) be a directed, weighted graph with non-negative edge weights. Let P =
(v1, v2, . . . , vn) be a shortest path from v1 to vn, and denote the subpath (vi, vi+1, . . . , vj)
as Pij . Then Pij is the shortest path from vi to vj.

Proof: Notice that w(P) = w(P1i) + w(Pij) + w(Pjn). Assume that there is some path P ′

ij

from vi to vj with weight w(P ′

ij) < w(Pij). Then P1i ∪ P ′

ij ∪ Pjn is a path from v1 to vn with
weight w(P1i) + w(P ′

ij) + w(Pjn) < w(P). But this is a contradiction, since P is the shortest
path from v1 to vn, so Pij is the shortest path from vi to vj as we wanted to show.

3.3.5 Lemma (Convergence Property)

Let G(V,E) be a directed, weighted graph with non-negative edge weights. Suppose that
v1 ∈ V is the starting vertex of G, and let P be the shortest path from v1 to v, where u
precedes v on the path. Further suppose that we initialize d(v1) = 0, d(v) = ∞ for v 6= v1
and then apply Relax(vj, vk) to a subset of edges (vj, vk) ∈ E containing (u, v). Then if
d(u) = δ(v1, u) at some point before this series of operations, d(v) = δ(v1, v) after the series
of operations.

Proof: By the Upper-Bound Property, if d(u) = δ(v1, u) at some point before the operation
Relax(u, v), then the same equality holds after all subsequent relax operations. After the
edge (u, v) is relaxed, we have

d(v) ≤ d(u) + w(u, v) (By Lemma 3.3.3)

= δ(v1, u) + w(u, v)

= δ(v1, v) (By Lemma 3.3.4)

3.3.6 Theorem (Correctness of Dijkstra’s Algorithm)

We now have the means to prove the validity of the Dijkstra’s Algorithm. Let G = (V, E)
be a graph, either undirected or directed, with non-negative edge weights, and let v1, v2 ∈ V
such that v1 and v2 are path-connected. Then the path P produced by Dijkstra’s Algorithm
has the lowest total cost of any path connecting v1 and v2.

Proof: We proceed by examining the state of the known vertices denoted S, and show
that each iteration of Dijkstra’s Algorithm, d(v) = δ(v1, v) for all v ∈ S. For the sake of
notation, we will assume that v1 is path-connected to every other v ∈ V , since Dijkstra’s
Algorithm only operates on path-connected vertices anyway. Note that at the beginning of
Dijkstra’s Algorithm, the first vertex to be marked as known is v1, and d(v1) is set to 0, so
d(v1) = δ(v1, v1) = 0 as we want.

We now want to show that in each proceeding iteration of Dijkstra’s Algorithm, if the un-
known vertex v ∈ V − S is marked as known, then d(v) = δ(v1, v). In order to do this, we

9

will suppose that this is not true and establish a contradiction, so let u ∈ V be the first
vertex added to S for which d(u) 6= δ(v1, u). We already know that d(v1) = δ(v1, v1) = 0, so
u 6= v1, and hence S 6= ∅. v1 and u are path-connected, so there must be a shortest path P
from v1 to u. Before u was marked as known, P connected the vertex v1 ∈ S to the vertex
u ∈ V − S, so we have a vertex y along P such that y ∈ V − S and a predecessor x ∈ S.
Notice that x ∈ S, so since u was chosen as the first vertex with d(u) 6= δ(v1, u), we know
that d(x) = δ(v1, x) when x was added to S. We also applied Relax(x, y) when x was added
to S, so by the Convergence Property, d(y) = δ(v1, y).

Because y occurs on the path P and all of the edges of E are non-negative, we have that
δ(v1, y) ≤ δ(v1, u) and hence d(y) = δ(v1, y) ≤ δ(v1, u) ≤ d(u) by the Upper-Bound Property.
Since both u and y were in V −S when u was chosen, however, we have that d(u) ≤ d(y), so
in fact d(y) = δ(v1, y) = δ(v1, y) = d(u). But then δ(v1, u) = d(u), which is a contradiction
of how u was chosen. So d(u) = δ(v1, u) when u is added to S, and hence d(v) = δ(v1, v)
for all v ∈ S at each step of the algorithm. In particular, d(v2) = δ(v1, v2), so the path that
Dijkstra’s Algorithm constructs from v1 to v2 is in fact the shortest possible path.

4 Maximum Flow Problem

With Dijkstra’s Algorithm, we have solved one of the major problems that we posed at the
beginning of this paper. We have shown that given a graph with a certain cost associated to
each edge, we can find the path of lowest cost from one vertex to any other vertex, or more
specifically, that given a network with a certain speed associated to each connection between
components, we can find the fastest possible route from one component to another.

Sending all of a network’s traffic over a single path, however, can cause performance degra-
dation for all the connections that use it. For each connection between components, there is
a limit to how much traffic can pass over it at once without negatively impacting its speed or
reliability, which in computer science is known as channel capacity. In this section, we will
explore the problem of maximizing the flow of data over a network from one component to
another given a channel capacity for each connection. More generally, this is known as the
maximum flow problem for flow networks.

4.1 Terminology

We will begin the discussion of maximum flow with some terminology. A flow network is a
directed graph G = (V,E) in which each edge (u, v) ∈ E has a capacity c(u, v) ≥ 0. For edges
(u, v) /∈ E, we define c(u, v) = 0. As opposed to start and end vertices, we instead refer to
the origin and destination vertices in a flow network as the source and the sink, respectively.
We will assume that in a flow network G = (V,E) with source s and sink t, for any vertex
v ∈ V there is a path from s to t that passes through v.

A flow in a flow network G = (V,E) with source s and sink t is a function f : V × V → R

that satisfies the following properties:

1. Capacity Constraint: For all u, v ∈ V , f(u, v) ≤ c(u, v).

2. Skew Symmetry: For all u, v ∈ V , f(u, v) = −f(v, u).

10

3. Flow Conservation: If u ∈ V and u 6= s, u 6= t, then
∑

v∈V

f(u, v) = 0.

We say that f(u, v) is the flow from vertex u to vertex v. For two sets of vertices X and

Y and a flow function f , we define f(X, Y) =
∑

x∈X

∑

y∈Y

f(x, y) and c(X, Y) =
∑

x∈X

∑

y∈Y

c(x, y).

The value of a flow f , not to be confused with absolute value or norm, is denoted |f | and

defined as |f | =
∑

v∈V

f(s, v); i.e. the total flow out of the source.

The following is an example of a flow network that illustrates these concepts:

s

v1 v2

v3 v4

t

3

4

6

5

5

7

1

4 2 2 5

(a) A flow networkG = (V,E) where each edge (u, v) ∈
E is labeled with c(u, v).

s

v1 v2

v3 v4

t

3/3

4/4

5/6

2/5

0/5

6/7

1/1

−2/4 2/2 −1/2 1/5

(b) The same flow network G, where each edge (u, v) ∈
E is labeled with f(u, v)/c(u, v) for a flow function f .

In the first figure, we have constructed a flow network G = (V,E) with vertices V =
{s, v1, v2, v3, v4, t} and edges E as indicated, where the capacity c(u, v) of each edge (u, v) is
labeled. In the second figure, we have labeled the flow across each edge of a flow function f to
the left of each edge’s capacity. Though not pictured for every edge, we set f(v, u) = −f(u, v)
for all (u, v) ∈ E. The reader may quickly verify that f satisfies the Capacity Constraint
and the Skew Symmetry properties, and by summing the flows into and out of each vertex,
that f also satisfies the Flow Conservation property of flow functions. The value of the flow
f , in this case, is |f | = 7, which is the total flow out of the source s and into the sink t.

Additionally, for a flow network G = (V,E) and a flow f , we define the residual capacity of

11

an edge (u, v) ∈ E to be cf (u, v) = c(u, v)− f(u, v); that is, the difference between the flow
currently being sent across an edge and the capacity of the edge. The residual network of G
induced by the flow f is Gf = (V,Ef), where Ef = {(u, v)|u, v ∈ Eandcf (u, v) > 0}. The
residual network Gf of the flow network given in the above example is pictured below:

s

v1 v2

v3 v4

t

3

4

1

1

6

3

2

1

5

3 4

6

(c) The residual network Gf of the flow network pic-
tured above. Each edge (u, v) is labeled with cf (u, v).

4.2 Statement of the Maximum Flow Problem

With this terminology in mind, we can formulate a precise statement of the maximum flow
problem: For a flow network G = (V,E) with source s and sink t, what flow function
f maximizes |f |? We will solve this problem using the Ford-Fulkerson algorithm, which
was first presented by Lester Ford, Jr. and Delbert Fulkerson in 1956 [5]. Similar to the
presentation of Dijkstra’s Algorithm, we will first give the Ford-Fulkerson Algorithm as a
sequence of steps and then again in pseudocode.

4.3 Ford-Fulkerson Algorithm

Let G = (V,E) be a flow network with source s and sink t. We claim that it produces a
flow function f that maximizes |f |. Note that cf (P) is simply a temporary variable for the
residual capacity of the path P .

1. For each edge (u, v) ∈ E, initialize f(u, v) = f(v, u) = 0.

2. If there is a path P from s to t in the residual network Gf , continue to step 3, otherwise
terminate.

3. Set cf (P) = min
(u,v)∈P

cf (u, v).

4. For each (u, v) ∈ P , set f(u, v) = f(u, v) + cf (P) and f(v, u) = −f(u, v).

5. Return to step 2.

12

In pseudocode, we can express this algorithm as follows:

1 FlowFunction fordFulkerson (FlowNetwork G, Vertex s, Vertex t) {

2 FlowFunction f = new FlowFunction ();

3

4 // initialize the values of f for each edge in G to 0

5 for each Edge e in G {

6 f.setValue(e.from , e.to) = 0;

7 f.setValue(e.to , e.from) = 0;

8 }

9

10 // recall that the residual network of G has the same vertices as G, but

11 // contains only those edges e of G with a positive residual capacity cf(e)

12 ResidualNetwork Gf = G.residualNetwork (f);

13

14 // here we assume that Gf.getPath(s, t) returns any path from s to t in Gf

15 // (it does not matter which one) or null if no such path exists

16 Path P = Gf.getPath(s, t);

17 while(P != null) {

18 // find the minimum residual capacity of the edges on P

19 int cfmin = NaN;

20 for each Edge e in P {

21 if(cfmin == NaN || e.residualCapacity(f) < cfmin)

22 cfmin = e.residualCapacity(f);

23 }

24

25 // update the flow of f across each edge on P to be its current flow plus

26 // the minimum residual capacity of the edges on P

27 for each Edge e in P {

28 f.setValue(e.from , e.to) = f.getValue(e.from , e.to) + cfmin;

29 f.setValue(e.to , e.from) = -f.getValue(e.from , e.to);

30 }

31 }

32

33 return f;

34 }

4.4 Example Using the Ford-Fulkerson Algorithm

Before we prove the correctness of the Ford-Fulkerson Algorithm, we will show an example
of its application using the flow network G = (V,E) from the figures above. At each step
where we select a new path P , we will mark it in bold.

s

v1 v2

v3 v4

t

0/3

0/4

0/6

0/5

0/5

0/7

0/1

0/4 0/2 0/2 0/5

(a) Initialize the value of f for each edge to 0. Here the
flow network G is shown with each edge (u, v) labeled
as f(u, v)/c(u, v).

13

s

v1 v2

v3 v4

t

3

4

6

5

5

7

1

4 2 2 5

(b) The flow network Gf , with each edge (u, v) labeled
as vf (u, v).

s

v1 v2

v3 v4

t

4

5

1

5

4 52 2

3 7

6

(c) Select a path P from s to t. In this case, cf (P) = 3.
Here the values of cf (u, v) are shown on each edge.

s

v1 v2

v3 v4

t

0/4

0/5

0/1

0/5

−3/0 −3/0

−3/0

0/4 0/50/2 0/2

3/3 3/7

3/6

(d) Update the values of f along P . Here each edge
(u, v) is labeled as f(u, v)/c(u, v) We have included
some edges with zero capacity simply to show the flow
across them.

14

s

v1 v2

v3 v4

t

3

4

3

5

1

5

4
3

2 24 5

(e) The resulting residual network Gf , with edges
(u, v) labeled as cf (u, v).

s

v1 v2

v3 v4

t

3

5

1

3

3

224

4

5

4

5

(f) Select a new path P from s to t. Here cf (P) = 4.

s

v1 v2

v3 v4

t

3/3

4/4

0/5

0/1

4/5

−3/0 −7/0

−3/0

0/4 4/50/2 −4/2

−4/0

−4/0

7/7

3/6

(g) Update the values of f for each edge along the
path. Each edge (u, v) is labeled as f(u, v)/c(u, v).

15

s

v1 v2

v3 v4

t

3

4

3

5

1

1

7

4

2 64 1

(h) The resulting residual network Gf , with edges
(u, v) labeled as cf (u, v). Since there is no longer a
path from s to t, the algorithm terminates.

4.5 The Correctness of the Ford-Fulkerson Algorithm

The correctness of the Ford-Fulkerson Algorithm is actually a result of the Max-Flow Min-Cut
Theorem, which we will prove here after introducing a few lemmas and their consequences.
Before we begin, however, we must first introduce a few more terms.

First, for two flow function f1, f2 over the set of edges E, we define their flow sum f1 + f2 to
be the function (f1 + f2)(u, v) = f1(u, v) + f2(u, v) for (u, v) ∈ E. The cut of a flow network
G = (V,E) is a partition of V into two sets S and T , where s ∈ S, t ∈ T , and T = V −S. The
net flow across the cut (S, T) is f(S, T), and the capacity of the cut is c(S, T). A minimum

cut is a cut with the minimum possible capacity of any cut.

4.5.1 Lemma

Let G = (V,E) be a flow network with source s, sink t, and flow function f . Then we have

1. For all X ∈ V , f(X,X) = 0.

2. For all X, Y ∈ V , f(X, Y) = −f(Y,X).

3. For all X, Y, Z ∈ V with X∩Y = ∅, f(X∪Y, Z) = f(X,Z)+f(Y, Z) and f(Z,X∪Y) =
f(Z,X) + f(Z, Y).

4.5.2 Lemma

Let G = (V,E) be a flow network with source s, sink t, and flow function f . Let Gf be the
residual network of G induced by f , and let f ′ be a flow function of Gf . Then the flow sum
f + f ′ is a flow in G with value |f + f ′| = |f |+ |f ′|.

Proof: To show that the flow sum is a flow in G, we must verify the properties of flow

16

functions. For the Capacity Constraint, we have

(f + f ′)(u, v) = f(u, v) + f ′(u, v)

≤ f(u, v) + (c(u, v)− f(u, v)) (Since f ′(u, v) ≤ cf (u, v))

= c(u, v),

so the first property holds. For Skew Symmetry, we have

(f + f ′)(u, v) = f(u, v) + f ′(u, v)

= −f(v, u)− f ′(v, u)

= −(f(v, u) + f ′(v, u))

= −(f + f ′)(v, u),

so the second property holds. For flow conservation, for all u ∈ V − s, t we have

∑

v∈V

(f + f ′)(u, v) =
∑

v∈V

(f(u, v) + f ′(u, v))

=
∑

v∈V

f(u, v) +
∑

v∈V

f ′(u, v)

= 0 + 0

= 0,

so the third property holds and thus the flow sum f + f ′ is a flow of G. Finally, the value of
the flow sum is

|f + f ′| =
∑

v∈V

(f + f ′)(s, v)

=
∑

v∈V

(f(s, v) + f ′(s, v))

=
∑

v∈V

f(s, v) +
∑

v∈V

f ′(s, v)

= |f |+ |f ′|,

which concludes the proof.

4.5.3 Lemma

Let G = (V,E) be a flow network with source s, sink t, and flow function f , and let Gf be
the residual network induced by f . Let P be a path from s to t in Gf . Then the function
defined by

fp(u, v) =

cf (P) If (u, v) ∈ P,
−cf (P) If (v, u) ∈ P,
0 If (u, v) /∈ P and (v, u) /∈ P

is a flow in Gf . Furthermore, it has value |fp| = cf (P) > 0, since Gf has edges with positive
capacities.

17

4.5.4 Lemma

Let G = (V,E) be a flow network with source s, sink t, and flow function f , and let Gf be
the residual network induced by f . Let P be a path from s to t in Gf , and let fP as defined
in Lemma 4.5.3. Define the flow f ′ as f ′ = f + fP .

Then by Lemma 4.5.2 and Lemma 4.5.3, f ′ is a flow in G with value |f ′| = |f |+ |fP | > |f |.

4.5.5 Lemma

Let G = (V,E) be a flow network with source s, sink t, and flow function f , and let (S, T)
be a cut of G. Then the net flow f(S, T) = |f |.

Proof: By Flow Conservation, f(S − {s}, V) = 0. Applying Lemma 4.5.1, we have

f(S, T) = f(S, V)− f(S, S) (By part 3)

= f(S, V) (By part 1)

= f(s, V) + f(S − s, V) (By part 3)

= f(s, V) (By Flow Conservation)

= |f |.

4.5.6 Lemma

Let G = (V,E) be a flow network with flow function f . Then for any cut (S, T) of G,
|f | ≤ c(S, T).

Proof: By Lemma 4.5.5 and the Capacity Constraint, we have

|f | = f(S, T)

=
∑

u∈S

∑

v∈T

f(u, v)

≤
∑

u∈S

∑

v∈T

c(u, v)

= c(S, T).

4.5.7 Theorem (Max-Flow Min-Cut Theorem)

We are finally able to prove the Max-Flow Min-Cut Theorem, which shows that once the flow
network Gf of a flow network G and a flow function f no longer has a path from the source
to the sink, that f has the maximum value of any possible flow function for G. Since the
Ford-Fulkerson Algorithm iterates over the paths in Gf , improving upon the flow function
f until no path from exists from s to t in G, proving the Max-Flow Min-Cut Theorem is
equivalent to showing that the Ford-Fulkerson Algorithm is correct. We state the theorem
as follows:

Let G = (V,E) be a flow network with source s, sink t, and flow function f , and let Gf be
the residual network of G induced by f . Then the following statements are equivalent:

1. f is a maximum flow in G.

18

2. Gf has no path from s to t.

3. |f | = c(S, T) for some cut (S, T) of G.

Proof: First we will show that if (1) holds, then (2) also holds. Let f be a flow function
that maximizes the flow in G, and suppose that there is still some path P in Gf from s to t.
Let fP be defined as in Lemma 4.5.3. Then by Lemma 4.5.4, the flow sum f + fP has value
|f + fP | = |f | + |fP | > |f |, which contradicts the assumption that f maximizes the flow in
G. So (1) implies (2) as we wanted.

Now we will show that (2) implies (3). Suppose that Gf has no path from s to t, and let
S = {v ∈ V | there is a path from s to v in Gf}, T = V − S. Then (S, T) is a cut of G,
since s ∈ S, and there is no path from s to t in Gf , so t /∈ S and hence t ∈ T . Let u ∈ S,
t ∈ T . Then f(u, v) = c(u, v), since if this were not the case, (u, v) would be an edge of Gf

and hence v would be in S. By Lemma 4.5.5, then, |f | = f(S, T) = c(S, T) as we wanted to
show.

Finally we will show that (3) implies (1). By Lemma 4.5.6, we have |f | ≤ c(S, T) for all cuts
(S, T) of G. Since |f | = c(S, T) by (3), f is a maximum flow function of G. Thus we have
shown the equivalence of (1), (2), and (3), which completes the proof.

5 Conclusion

In this paper, we have solved two related problems in network theory. First, given a network
where the speed of the connection between every two components is known, we can find the
fastest possible connection from one component, such as a computer, to another, such as a
web server, by applying Dijkstra’s Algorithm to the corresponding graph. Second, given a
network where there is a limit to how much traffic can pass over each connection between
components, we can use the Ford-Fulkerson Algorithm to determine a flow function that
gives us the maximum possible traffic between one component and another.

These two algorithms present but a partial picture of network theory, however. We can find
the optimum path from one component to another, but what if one component along the
route were to freeze? It would be helpful to know the second- and third-fastest routes to the
destination as well. In addition, we have taken an omniscient view of the graphs that we
have examined so far; how can we have the individual components in a network communicate
effectively to solve the shortest-path or max-flow problems? There are also more aspects than
speed and channel capacity to consider in finding the “best” route between components, since
reliability, i.e. the number of packets a connection successfully transmits versus how many
are sent over it, is just as or perhaps more important than speed in many cases.

For further reading, Introduction to Algorithms [1] is a great resource on the use and runtime
of graph algorithms, and Data Structures and Algorithm Analysis in Java [6] presents graph
algorithms and their implementations in code from a computer science perspective.

19

References

[1] Cormen, Thomas H. Introduction to Algorithms. 2nd ed. Cambridge, Massachusetts:
MIT, 2001.

[2] Dechter, Rina, and Judea Pearl. “Generalized Best-first Search Strategies and the Opti-
mality of A*.” Journal of the ACM 32.3 (1985): 505-36. ACM Digital Library. Web. 18
May 2010.

[3] Deo, Narsingh. Graph Theory with Applications to Engineering and Computer Science.
Englewood Cliffs, NJ: Prentice-Hall, 1974.

[4] Even, Shimon. Graph Algorithms. Computer Science Press, 1979.

[5] Ford, Jr., L. R., and D. R. Fulkerson. “Maximal Flow Through a Network.” Canadian

Journal of Mathematics 8 (1956): 399-404. Canadian Mathematical Society. Web. 2 June
2010.

[6] Weiss, Mark Allen. Data Structures and Algorithm Analysis in Java. 2nd ed. Boston:
Pearson Addison-Wesley, 2007.

[7] Wilson, Robin. Introduction to Graph Theory. New York, NY: Academic Press, 1972.

20

