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1 Introduction

This paper will contain a fuller proof of two results derived by Erdos over the
span of about 8 years. The first, given in The Difference of Consecutive Primes,
Duke Math J., Vol 2, Number 6(1940), 438 – 441, was the first proof that

lim inf
pn+1 − pn

logn

< A,A < ∞ (1)

where pn is the nth prime, and in particular found that A ≤ 1− c, for some
c > 0. More modern methods (indeed, published in 2009!) finally showed that
A = 0, as long suspected.

The other efforts approaches the question from a different point of view.
Rather than attempting to bound the differences of infinitely many primes,
Erdos and Turan ask instead how the primes behave under different mean values,
and in particular, whether there are infinitely many solutions to the inequalities

(
pt

n−1 + pt
n+1

2
)1/t > pn, (

pt
n−1 + pt

n+1

2
)1/t < pn, (2)

for any t. The cases of t = 0 (using a limiting argument) and t = 1 reduce down
to the question of whether there are infinitely many primes that satisfy

pn−1pn+1 > p2
n, pn+1pn−1 < p2

m (3)

and
pn−1 + pn+1

2
> pn,

pn−1 + pn+1

2
< pn (4)

respectively, which are of course just the familiar geometric and arithmetic
means.

In §2 we will present a more detailed proof of (1) based on Erdos’s proof in
[1], with more details being filled in as necessary, and in §3 we will present two
proofs that (2) has infinitely many solutions, one based on Erdos’s proof in [4],
the second on [2]. Later in [4] Erdos proves some generalizations of the above
statement dealing with any sequence of integers bounded in their growth rates,
and then some non-elementary proofs that (2) has infinitely many solutions, but
we will not discuss these in this current paper. We will note here that the latter
approach for showing that (2) has infinitely many solutions actually does better;
in fact it demonstrates that the number of solutions for pk such that k ≤ n does
not drop below (c2/2)/n, hence, it seems that that method is worthy of study.
A fourth paper by Erdos is cited here as well; however its content was deemed
more technical and less interesting and the author decided to use it merely as a
reference.

Notation Throughout this paper, n will be used to denote natural numbers,
pn will be the nth prime, and ck will be a positive constant. We will also use
dk to denote pk+1 − pk.
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2 Proof of Formula 1

At the time of Erdos’s publication, it was known that

lim sup
pn+1 − pn

log pn
= ∞,

and various lower bounds on the differences between infinitely many consecutive
primes were known; however, much less was known about the quantity A in (1).
As mentioned previously, Erdos’s proof of (1) was the first unconditional result
concerning the limit inferior. Hardy and Littlewood, proved that the A in (1)
must be less than 2/3 using the Riemann Hypothesis, a few years before, and
Rankin, again assuming the truth of the Riemann Hypothesis, proved that it
was less than 3/5.

The article in question [1] was surprisingly terse and as noted by Dr. Morrow
much more like a proof sketch than a full-blown proof, however, it was as far
as the author knows Erdos’s most extensive treatment on the topic. Therefore
some details which Erdos omitted will be expanded upon, and afterwards there
will be a brief discussion on late developments on this topic.

2.1 Proof

Erdos’s proof of formula (1) relies on several lemmas.

Lemma 2.1. For any a, the number of solutions of pi+pj = a, where pi, pj < n,
is at most

c
∏

p|a
(1 +

1
p
)

n

(log n)2
,

for some c, and for p ranging over prime numbers.

I cannot find a proof of 2.1 in English, unfortunately, and it is beyond my
ability as of now to prove it independently, so I will have to take it on faith. Er-
dos cites the paper Uber additive Eigenschaften von Zahlen by L. Schnirelmann
publishced in Math. Annalen, vol. 107 (1933), and Dr. Greenberg assures me
that the product is indeed over the primes, and with that we disregard the proof
of the above lemma.

Lemma 2.2. For c1 sufficiently small, we have that

∑

R

∏

p|a
(1 +

1
p
) ≤ log n

6c
,

where the R indicates that the summation is over (1 − c1) log n ≤ a ≤ (1 +
c1) log n, the ps are prime, and the c is the same as in the statement of Lemma
2.1.

Proof. By the existance of a unique prime factorization, we see that the largest
denominator that can result from expanding the product is in fact (1+c1) log n,
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so if we correctly adjust the coefficients, we should be able to bound the entire
thing by

∑(1+c1) log n
i=1 ki/i for some ki. There are at most d2c4 log ne integers

over which the a can range, where the brackets indicate the ceiling function. As
for any a the product ∏

p|a
(1 +

1
p
)

will, once expanded, provide at most a coefficient of 1 to the 1/d term, for any
d ≤ p, again by the uniqueness of the prime factorization, and as in a span of n
numbers a number d can only be a divisor of dn/de such numbers, we see that

∑

R

∏

p|a
(1 +

1
p
) ≤

∑

d≤(1+c1) log n

1
d
(
2c1 log n

d
+ 1),

as

dd2c1 log ne
d

e ≤ (
2c1 log n

d
+ 1),

for d ≥ 1, and so as

∑

d≤(1+c1) log n

1
d
(
2c1 log n

d
+ 1) ≤ c2 log n +

∑

d≤(1+c1) log n

1
d
≤ log n

6c

for c1 sufficiently small.

The proof of the theorem now depends on a basic estimate on how many
primes can exist between n/2 and n for any n. Let pk, pk+1, · · · , pk+j be the
primes such that pi ∈ (n/2, n). We now require another lemma.

Lemma 2.3. Let pk, pk+1, · · · , pk+j be defined as above. For sufficiently large
n, j > (1/2− ε)n/ log n.

Proof. By the prime number theorem, as π(n) > (1 − ε)n/ log n for large n,
and π(n/2) > ((1 + ε)n/2)/ log(n/2) > ((1 + ε)n/2)/ log n, we get that the
number of primes between (n/2, n) is just π(n)− π(n/2), which is greater than
(1/2− 3ε/2)n/ log n, which, as ε is arbitrary, proves the claim.

Now to show formula (1), it is enough to show that there is at least one i,
for n large, such that pk+i+1 − pk+i < (1− c4) log n, as then we see that

lim inf
i→∞

pi+1 − pi

log pr
≤ (1− c4) log n

log n/2
→ 1− c4.

The trick is to use telescoping sums. Let dk+i = pk+i+1− pk+1. As pk+j − pk ≤
n/2, we get that

j−1∑

i=1

di ≤ n/2. (5)
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Now, from Lemmas 2.1 and 2.2, we gather that the number of bs such that
(1− c1) log n ≤ b ≤ (1 + c1) log n does not exceed

c
∑

U

∏

p|a
(1 +

1
p
) ≤ n

6 log n
.

Prooceed now by contradiction. Assume that there is no dk+i such that
dk+i < (1 − c1) log n. Then that means, as at most n/(6 log n) of the (1/2 −
εn)/ log n (by Lemma 2.3) d’s fall within the range ((1−c1) log n, (1+c1) log n),
we get that

j−1∑

i=1

dk+i ≥ n

6 log n
(1− c1) log n + (1/2− 1/6− ε)

n

log n
(1 + c1) log n,

which is, after cancelling out redundant terms, (1−2ε)n/2+(1/6− ε)c1n > n/2
if ε is sufficiently small, which clearly contradicts (3). Hence we must have at
least one dk+i < (1− c1) log n, which completes the proof.

2.2 More Recent Developments and Conjectures

This result was at the time groundbreaking, but still very unsatisfactory. In-
deed, if the twin prime conjecture is true, as it likely is, then it should be trivially
obvious that lim inf(pk+1 − pk)/ log pk is zero. Eventually, in 2009, Goldston,
Pintz, and Yildirim proved that the limit inferior is in fact zero, and further-
more produced the unconditional result that, letting qn denote the nth number
that has at most two nontrivial factors, lim inf(qk+1 − qk) < 26. However, the
techniques that they used are too advanced for the purposes of this paper, and
it might be said much less elegant than Erdos’s method here.

In [1], Erdos goes on to consider a similar looking sum to the one used to
produce a contradiction in the above proof, which however does not telescope
so neatly. He considers the k primes less than n, and conjectures that

k−1∑

i=1

(pi+1 − pi)2 = O(n log n).

Cramer, in 1937, provide by assuming the truth of the Riemann Hypothesis,
that

k−1∑

i=1

(pi+1 − Pi) = O(
n

log log n
), (pi+1 − Pi) > (log qi)2,

which motivated Erdos’s own conjecture about the topic. However, Erdos could
not find a way to prove his conjecture, and in fact could not even prove a highly
simplified version of this conjecture, and indeed, the author has not found any
progress on these questions even to this day, and as Erdos himself writes, ”the
result, if true, must be very deep.”
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3 Considering the Differences of Primes

This section will fundamentally deal with the proof of the following theorem:

Theorem 3.1. There are infinitely many solutions to (2).

We will approach this in two different ways. First, by considering different
mean values directly, and then by considering the differences between primes
and putting a lower bound on the number of solutions to (2). The first was
suggested in [4], and the second is dealt with thoroughly in [2]. The second is
more intensive but gives us better results than the first method.

3.1 By Considering Mean Values

This section will deal directly with (2), and prove Theorem 3.1 directly by that.
This following result was claimed previously, and now will be proved.

Lemma 3.2. For positive fixed a, b,

lim
t→0

(
at + bt

2
)1/t =

√
ab.

Proof. The proof is straightforward. As

(
at + bt

2
)1/t = exp(

log((at + bt)/2)
t

),

and

lim
t→0

log((at + bt)/2)
t

=
1
2
(log a + log b),

the result follows immediately.

Erdos first notes that the first inequality in (4) has infinitely many solutions,
by the following lemma.

Lemma 3.3. lim sup dk = ∞.

Proof. This follows directly from the fact that n! + 2, n! + 3, n! + 4, · · · , n! + n
are all composite, and so the largest prime less than n! + 2 and the first prime
after that must differ by at least n, hence there are infinitely many consecutive
primes for which the difference grows without bound.

We can now prove the above claim.

Theorem 3.4. The first inequality in (4) has infinitely solutions.

Proof. We note that the claim is the same as claiming that there are infinitely
many n such that

pn+1 − pn > pn − pn−1.
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Assume this is not the case, that is, for some n0 for all n ≥ n0 we would have
that

pn+1 − pn ≤ pn − pn−1,

which in particular would imply that pn−1−pn was bounded for all large enough
n, which contradicts Lemma 3.1.

The other inequalities require slightly more delicate bounds. First we note
the well-known (actually well-known!) fact that for λ ≈ 1.25506,

π(x) > λx/ log x, (6)

and we require a lemma.

Lemma 3.5. Let A > 0 be any constant. Then there are infinitely many n such
that

pn − pn−1 < pn+1 − pn, pk − pk−1 < Ap
1/2
k (7)

and
pn − pn−1 > pn+1 − pn, pk+1 − pk < Ap

1/2
k . (8)

Proof. We first show that from (6), that there is a c2 and are infinitely many
m such that pm+1 − pm < c2 log pm. Assume otherwise. Then for all k ≥ m we
have that pm+1 − pm > c2 log pm. We notice that for a suitable c3 > 1, we get
that for sufficiently large k,

k−1∑
m

log pm+1 > (m + k) log(m + k − 1), (9)

as by the prime number therem, for large n,

π(n) ≤ (1 + ε)pn

log pn
,

and so plugging in n = pk, we see that

k ≤ (1 + ε)pk

log pk
,

and in particular
pk

k
≥ log pn

(1 + ε)
.

Furthermore, we see that by [5] on pg. 460,

(m + k) log(m + k − 1) > (1− ε0)(m + k) log(m + k) > c3n log pm+k

Hence, by assumption we see that pm+k > pm+c2

∑k−1
m log pm+1 > c2c3n log pm+k,

so
λpm+k

log pm+k
≥ n log pm+k

log pm+k
≥ n,
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which contradicts (6). Hence there are indeed infinitely many m such that
pm+1 − pm < c2 log pn. By Theorem 3.4, there are infinitely many primes such
that pn+1 − pn > pn − pn−1. Choose the first k > m for m large for which
pn+1 − pn > pn − pn−1. Then clearly if m is large then both conditions of (7)
are satisfied.

To prove (8) has infinitely many solutions, assume again that there are only
finitely many; that is there are no solutions for p > p0. We just proved above
that there are infinitely many primes for which pm+1−pm < c2 log pm, so choose
such a m large. Letting pr be the smallest prime greater than p

1/2
m , we see that

pr+1 − pr ≤ pr+2 − pr+1 ≤ · · · ≤ pm+1 − pm ≤ c2 log pm,

for if not then letting k such that r < k ≤ m be the greatest such that pk+1−pk ≤
pk − pk+1, we get that pk+1 − pk ≤ pm+1 − pm < c2 log pm ≤ Ap1

m/2, which
cannot be true because then pk is a solution for (8). But now, if

pi+1 − pi = pi+2 − p2 = · · · = pi+s+1 − pi+s = d,

since that the numbers α, α + β, α + 2β, · · · , α + αβ = α(β + 1) cannot all be
prime, we get that s ≤ d, so by the above we get that m− r ≤ c2 log pm, so

m = π(pm) ≤ r + c2 log pm,

which contradicts (6), which completes the proof of the lemma.

Now we have all the necessary tools to prove Theorem 3.1. We first show
that there are infinitely many solutions to the first inequality of (2). It is trivial
to show (by taking derivatives) that ((at + bt)/2)1/t is an increasing function of
t, so it suffices to prove it for t = −l, where l ≥ 2. Let pk−1, pk, pk+1 satisfy (7)
with A ≤ 1/(2l2). We will show that it also satisfies (2). Let pk − pp−1 = u,
as again it is trivial to show that ((at + bt)/2)1/t is increasing with respect to
a and b, it is sufficient to show that the first inequality of (2) is satisfied for
pk+1 − pk = u + 1, which is tantamount to showing that

(
(pk − u)−l + (pk + u + 1)−l

2
)−1/l > pk.

By moving everything over, this is equivalent to showing that

(pk − u)−l + (pk + u + 1)−l < 2p−l
k ,

or
(pk + u + 1)l(2(pk − u)l − pl

k) > pl
k(pk − u)l,

by moving everything under a common denominator (These steps were done
carefully by Erdos, which is surprising considering the terse tone of the rest of
the paper). Now as u = pk − pk−1 < p

1/2
k /(2l2) by assumption, we get that

pl
k−ulpl−1

k < (pk−u)l < pl
k−ulpl−1

k +
(

l

2

)
u2p)kl−2 + · · · < pl

k− (ul−1/2)pl−1
k ,
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for large k, so it suffices to show that

pl
k + (u + 1)lpl−1

k (pk − 2ulpl−1
k ) > pl

k(pl
k − (ul − 1/2)pl−1

k ),

which after expanding everything out, is equivalent to showing that

(1− 1/2)pl−1
k > 2l2u(u + 1)pl−2

k ,

which is obviously satisfied for u < p
1/2
k /2l2, which shows half of Theorem 3.1.

To show the second half, procced as before, but put pk+1−pk = u, and consider
the case of pk − pk−1 = u + 1 and t ≥ 2. Then we show that

(pk − u− 1)t + (pk + u)t − 2pt
k < 0,

so letting u < p
1/2
k /2l2, by a symmetric argument with inequalities reversed to

what we did above, we get that

(pk + u)t < pt
k + (tu + 1/2)pt−1

k ,

so again, essentially repeating what we did above, we get that

(pk−(u+1))t+(pk+u)t−2pt
k < 2pt

k−((u+1)t−1/2)pt−1
k +(tu+1/2)pt−1

K −2pt
k < 0,

which completes the proof of Theorem 3.1.

3.2 By Considering Differences

In this section we will approach Theorem 3.1 by considering the equations

dk+1 > (1 + c1)dk k ≤ n (10)

and
dl+1 < (1 + c1)dl l ≤ n (11)

for c1 < 1. We will eventually build up the following result:

Theorem 3.6. There are infinitely many solutions to equations (10) and (11);
in fact, for some c2 < 1, the number of solutions of both is greater than c2n.

If we assume this, then we can almost immediately obtain a stronger version
of Theorem 3.1, after a few lemmas.

Lemma 3.7. For all n,
pn < 2n log n. (12)

Proofs of this are widely known, for instance in [5]. Using Lemma 2.2, we
can easily deduce the following:

Lemma 3.8. Let ε be fixed. The number of k ≤ n with pk+1 > (1 + ε)pk is less
than c1 log n for some fixed c1.
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Proof. The result follows from pigeonholing. Let pj1 , pj2 , · · · , pjk
be the se-

quence of k primes with the property that pjα
> (1+ ε)p(jα−1) and jα < n; that

is, the sequence of primes that satisfy the condition in the lemma. Then clearly
by applying the defining inequality and the fact that pk+1 > pk, we get that
pn > pjk

> (1 + ε)kp(j1−1), so if k > c1 log n for all c1 for n sufficiently large, we
get that, by lemma 1, 2n log n > p(j1−1)n

c1 log(1+ε) for all c1 for n sufficiently
large, which is clearly false, hence, by contradiction, k < c1 log n.

Using these lemmas, we can now show the following:

Theorem 3.9. For all t and all sufficiently large n the number of solutions of

(
pt

k−1 + pt
k+1

2
)1/t > pk, k ≤ n

is bounded below by (c2/2)n.

Proof. From the above lemma, and Theorem 3.2, we gather that there are, for
sufficiently large k and n, there are at least c2n−c log n > (c2/2)n simultaneous
solutions to the equations

pk+1 < (1 + ε)pk, dk > (1 + c1)dk−1, k ≤ n. (13)

Now we show that if pk−1, pk, and pk+1 satisfy (10), then they satisfy the
first inequality of Theorem 3.2. We note that it immediately follows from (13)
that

εpk > pk+1 − pk > (1 + c1)dk−1,

so as the first inequality in Theorem 3.2 is equivalent to showing the inequality
that

pt
k+1 + pt

k−1 > 2pt
k,

or that
pt

k+1 − pt
k > pt

k − pt
k−1,

which as the right side is less than pt
k − pt

k−1 < (pk − pk−1)t < εtpt
k, and the

right side is greater than c(pk+1 − pk)t for some c, we get that for sufficiently
small ε, as c(1 + c1)dk > εpk, for small ε, our claim is proved.

The proof of the opposite directions uses virtually the same lemmas but with
orientations reversed, and so if Theorem 3.2 is true we get some very nice lower
bounds on the number of solutions to (2), which immediately implies that there
are infinitely many such solutions.

Now we proceed with the proof of Theorem 3.2 itself. We require several
lemmas again.

Lemma 3.10. For sufficiently small c1 > 0 the number of solutions of the
inequalities

1− c1 < dk+1/dk < 1 + c1, k ≤ n (14)

is less than n/4.
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Proof. The proof requires surprisingly technical sieve methods. First we con-
struct a general bound to the number of solutions of equations relating to the
differences of primes. Let g(n; a, b) denote the number of solutions to the simul-
taneous equations

dk+1 = a, dk = b, k ≤ n.

Let V be the number of primes p0 < 2n log n such that p0 +a and p0 +a+ b are
still prime. As pn < 2n log n, it is clear that g(n; a, b) ≤ V. Now for small c2,
letting q1, q2, · · · , qj be the primes less than nc1 , it is clear that V is not greater
than nc2 + U, where U is the number of integers m ≤ 2n log n which satisfy, for
all i,

m 6≡ 0 mod qi, m 6≡ −a mod qi, m 6≡ −(a + b) mod qi,

as these would be the solutions to the above simultaneous equations assuming
there were only the j primes below nc1 so for small c1 this is clearly greater
than V as there are less and less primes with which the numbers are filtered
through, resulting in a larger and larger value. Now by elementary number
theory, if q - ab(a + b), then none of the above equivalences follow trivially from
any other; that is, it is not the case that

0 ≡ a, 0 ≡ (a + b) mod qi, etc.,

and as it could not be the case that q, q + a and q + a + b could be prime
and have q - ab(a + b) (as we can create a factorization), we may assume that
the residues (the modulus) are distinct (Throughout this proof we will assume
that q is prime). Now, Erdos proved in [3] that the number of solutions to the
modular equivalences above with m < r is less than

cr
∏

i

(1− 3/qi);

hence we have that

U < c4n log n
∏

i

(1− 3/qi), q < nc3 , q - ab(a + b)

with the factor of two being absorbed into the constant. Now, by [5] on p. 349,
we see that ∏

q<x

(1− 3
q
) <

c

(log x)3
,

so writing that product as the product of all the terms for which q < nc3 and
q - ab(a + b) and the others, or those for which q | ab(a + b), as we discussed
before that if q | ab(a+b) then q > nc3 , as otherwise contradictions arise. Hence,
we get that

U < c5
n

(log n)2
∏

(1 +
3

q − 3
), q | ab(a + b),
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so reindexing the product slightly simplifies the above to the assertion that

U < c5
n

(log n)2
∏

(1 +
3
q
), q | ab(a + b),

and so we get, that as V ≤ U + nc1 , that

g(n; a, b) < c′5
n

(log n)2
∏

(1 +
3
q
), q | ab(a + b).

as for small c1 nc1 ≤ n/(log x)2.
Now we can proceed as follows. Split the k′s that solve (14) into two cate-

gories. First consider all such k for which dk > 20 log n. As pn < 2n log n, we
get that the number of k’s in that catagory cannot exceed n/10, as otherwise
the primes would have to be larger. The second group requires subtler consid-
eration. As dk+1 = b and dk = a, and so by (14) 1 + c1 > b/a > 1 − c1, the
number of k’s in the second class is not greater than

∑

R

g(n; a, b) < c6
n

(log n)2
∑

R

∏
q

(1 +
3
q
), q | ab(a + b), (15)

where the R indicates that the summation is over such a and b for which a <
20 log n, as this is the second category, and 1+ c1 > b/a > 1− c1, (in the second
sum we consider a to be fixed) as explained above. Now as q is prime, as a
prime only divides ab(a + b) if it divides a, b, and/or a + b, we get that

∑

R

∏
q

(1 +
3
q
) ≤

∑
1

(
∏

q|a
(1 +

3
q
)
∑
2

∏

q|b(a+b)

(1 +
3
q
)),

where
∑

1 indicates that the sum is over a < 20 log n, and the
∑

2 indicates that
the sum is over 1 + c1 > b/a > 1− c1, as the latter sum includes a few possible
repeated terms but no omitted terms. By that same logic,

∏

q|b(a+b)

(1 +
3
q
) ≤

∏

q|b
(1 +

3
q
)

∏

q|(a+b)

(1 +
3
q
),

and so as
∏

q|b
(1+

3
q
)

∏

q|(a+b)

(1+
3
q
) < 2

∏

q|b
(1+

3
q
)

∏

q|(a+b)

(1+
3
q
) ≤

∏

q|b
(1+

3
q
)2+

∏

q|(a+b)

(1+
3
q
)2,

as (α− β)2 ≥ 0, for any α, β, and so α2 + β2 ≥ 2αβ, and so as

(1 +
3
q
)2 = 1 +

6q + 9
q2

< 1 +
15
q

for all prime q, we get that
∑
2

(
∏

q|b(a+b)

(1 +
3
q
)) <

∑
2

(
∏

q|b
(1 +

15
q

) + (
∏

q|(a+b)

1 +
15
q

)).
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Now we use a similar technique to one used in the proof of Formula (1). Fixing
a, we notice that for b such that (1+c1)a > b > (1−c1)a for any number m there
are at most 1 + 2c1a/m solutions to the equation b ≡ 0 mod m. By replacing
b with a + b at every instance, we see that there are at most 1 + 2c1a/m to the
equation a + b ≡ 0 mod m, and so letting v(m) denote the number of prime
divisors of m, we get that (as a factor of 15 gets multiplied to the coefficient of
1/m for every prime factor m has, which is evident just by expanding) that the
above sum of products is less than

∑
m<3a

2(1 +
2c1a

m
)
15v(m)

m
,

as q ranges over primes and so the largest number d such that 1/d could appear
in the sum is a + b < 3a as we are summing over that restricted range. As after
some value the number of unique prime factors of a number n grows slower than
log15 n, this grows at O(n), which can be shown by splitting the sum up into
those two groups, so as c1 is constant, the above is bounded by c6c1n for some
c6. Notice also that c6 should intuitively be quite large to cover the constant
factors (and increasing as c1 decreases). We will not provide the full argument
here; it is rather tedious and only requires very basic counting techniques, and
so we leave it to the reader.

Given what was stated above, we see then that, by putting the inequality in
the expression for the original sum, that, by similar arguments to the above

∑

R

∏

q|ab(a+b)

(1 +
3
q
) < c6c1

∑
1

a
∏

q|a
(1 +

3
q
) < 20c6c1 log n

∑
1

∏

q|a
(1 +

3
q
), (16)

which using similar logic as above, is bounded by

20c6c1 log n

∞∑
m=1

20 log n3v(m)

m2
,

and as v(m) actually grows slower than logarithmically with base 3 (we men-
tioned this above; again, it is not difficult to prove) and so the infinite sum
converges to some finite value, and so that above is less than

c7c1(log n)2 <
1

10c′5
(log n)2

for c1 sufficiently small, so the number of solutions in the second category is
also less than n/10, so the whole thing is less than n/4, which finally proves the
lemma.

The above lemma lets us set a bound on the number of differences between
two numbers, and now we set our sights on bounding the number of dks such
that they are unbounded from above and unbounded from below.

13



Lemma 3.11. For some constant c8, the number of integers k ≤ n such that

dk+1/dk > t or dk+1/dk < 1/t (17)

is less than c8n/t1/2.

Proof. The proof is similiar to the proof of the previous lemma, but we will
only consider this for large t; this is sufficient as for an appropriate choice of
c8 we can adjust it for smaller t’s. We first split the integers satisfying (16)
into two classes. The first class contains all the k’s such that either dk ≥
t1/2 log n or dk+1 ≥ t1/2 log n. The second class contains all the k’s such that
dk ≤ (log n)/t1/2, ordk+1 ≤ log n/t1/2. Clearly these two classes contain all such
k’s, as if none of these inequalities held an evident contradiction arises from
considering the ratio of the successive dk’s. By Lemma 3.7, the number of k’s
in the first group must be less than 4n/t1/2. Again, the second group requires
more delicate handling. Erdos uses another result from [3] that states that the
number Za of solutions of the equation du = a, u ≤ n is less than

Za < c9 log n
∏
q

(1− 2
q
), q|a, q < nc9 .

We do as we did in the previous proof, and assert that

Za < c10
n

log n

∏
p | a(1 +

2
q
),

and so from almost mirror reasoning as in the previous lemma we find that

Zα < 2c10
n

log n

∑

a<log n/t1/2

∏

q|a
(1 +

2
q
) < 2c10

n

log n

∞∑

k=1

log n2v(k)

t1/2k2
< 2

c11n

t1/2
, (18)

where the factor of two in those first inequalities arises just because either dk

or dk+1 could satisfy the conditions. The proof is now complete; combining the
two parts gives use the necessary estimates.

After these technically challenging lemmas, however, the proof of Theorem
3.6 follows almost immediately. We will only prove the first claim; the second
follows symmetrically. We proceed by contradiction; suppose that for all c1 > 0
and ε > 0 there is an arbitrarily large n such that the number of solutions of

dk+1 > (1− c1)dk, k ≤ n

is less than εn. Consider the telescoping product

dn

d1
=

d2

d1

d3

d2
· · · dn

dn−1
.

We now consider the range of all the possible dk+1/dk’s and bound them all:
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1. By Lemma 3.11 the number of k ≤ n satisfying dk+1/dk > 22l is less than
c8n/2l.

2. By the contradiction hypothesis, the number of dk+1/dk which are bounded
by 22u for all u does not exceed εn

3. By Lemma 3.10 the number the number of dk+1/dk which are bounded
by 1 + c1 and greater than 1− c1 is less than n/4

4. The remaining ratios must not exceed 1− c1, and as the bounds above do
not sum up to n/2 for large l and n, the number of such ratios does not
exceed n/2.

Hence their product cannot exceed

dn

dn
< 22uεn(

∏

l≥22u

(22l)c8n/2l

)(1 + c1)n/4(1− c1)n/2,

(the infinite product converges very quickly and its convergence is quite trivial
to show) and so

dn

d1
< 22uεn exp

∑

l≥u

c9nl log 4
2l

(1− c1)n/4.

Now choosing ε small then for some u we can get that 22uεn < (1 + c1)n/8 and
the exponentiated sum to be less than that same amount, and so we evidently
get that dn/d1 = dn < (1 + c1)n/4(1 − c1)n/4 = (1 − c2

1)
n/4 < 1/n, which

does not make sense, hence there is a contradiction, and so the first proposition
of Theorem 3.6 is proved. The other direction uses similar estimates, in fact
uses slightly simpler bounds, and so we will omit its proof, which follows almost
identically as above.

3.3 Conjectures

Erdos’s derived result here has not seen much application as far as the author
knows, and so these theorems seem to remain merely a mathematical curiosity.
These results however do dispel any notion of the ”convexity” or ”concavity”
of prime numbers, and again reinforce then notion of the utter unpredictability
of the abundance of prime numbers. However, in the course of those two pa-
pers Erdos does conjecture several interesting and to my knowledge unsolved
formulas, which if resolved could provide further insight into the abundance of
primes. His primary concern throughout [2] and [4] was to try to find bounds
on the number of solutions to dk > dk−1 and dk < dk−1; both papers offer lower
bounds, but not much other detail into how dk acted as a function of k. In [2]
Erdos out of curiosity defines the function

w(k) =
{

1 if dk > dk−1;
0 if dk ≤ dk−1.
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It would not be unreasonable to consider the behavior of the number W =∑∞
i=0 w(k)/2i; and it would seem that it should (or at least the author would

think so) be true that W is at least irrational; however, as there is in fact no proof
known today even of the much simpler proposition that w(k) does not merely
alternate between 1 and 0 in a predictable fashion for k sufficiently large, which is
rather shocking, actually, we cannot appraoch this problem at all. This perhaps
only serves to show the number of open questions and general unpredictability
that the prime numbers continue to exhibit even after thousands of years of
study.
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