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1 Introduction

The first complete mathematical formulation of Isaac Newton’s “n-body
problem” appeared in his publication, Principia, and has to do with the
predicting of the motions of a group of massive objects that interact with
each other gravitationally. Physically, this problem can be described as this:
given only the present positions and velocities of a group of celestial bod-
ies, predict their motions for all future time and deduce them for all past
time. In the paper, Off to Infinity in Finite Time, by Donald G. Saari and
Zhihong Xia[6], we are introduced to a less intuitive result of Newton’s law
of gravitation concerning the n-body problem after removing the possibility
for collisions. In their paper, we are concerned with a problem Poincaré and
Painlevé raised about a century ago: Without collisions, could the Newtonian
n-body problem of point masses eject a particle to infinity in finite time?

The purpose of this paper is to provide a review of Saari and Xia’s paper
as well as cover the language and tools necessary to examine more closely
the problems presented.

2 The Newtonian N-Body Problem

To understand more generally what Saari and Xia sought to show in their
paper, we must first provide a more precise statement of the traditional n-
body problem. That is:
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Consider n point masses m1, ...,mn in three-dimensional space.
Suppose that the force of attraction experienced between each
pair of the particles is Newtonian. Then, if the initial positions
in space and initial velocities are specified for every particle at
some present instant t0, determine the position of each particle
at every future (or past) moment of time.

The n-body problem itself can be reduced to a system of ordinary differential
equations (found from Newton’s second law of motion); however, when n ≥ 3,
the problem becomes increasingly difficult. The goal of Saari and Xia is
to modify this problem to consider a system of masses that does not have
collisions. Then, attempt to find a set up such that a mass may be accelerated
so it may travel an infinite distance in a finite time. More subtly, the problem
is to characterize the nature of “singularities” of n-body systems. In Saari
and Xia’s context, a singularity is a “time” value t = t∗ where analytic
continuation of the solution to the differential equations fail.

2.1 Solving the Two-Body Problem

Consider the n-body problem stated above. Let mj, rj be, respectively, the
mass and position vector of the jth particle, and let rij = ||ri − rj||, where
||...|| is the Euclidean length of the vector. From Newton’s second law of
motion, Fnet = ma, we have:

mj r̈j =
∑
i 6=j

mimj(ri − rj)

r3ij
(2.1a)

=
∂U

∂rj
, j = 1, ..., n (2.1b)

The left hand side of equation (2.1) is just ma and the right hand side is
Fnet which is Newton’s law of gravitation and the extra power of r in the
denominator is there to balance the extra factor (ri − rj) in the numerator
that is there to specify a direction for the force. U is defined to be the
self-potential, the negative of the potential energy, which is:

U =
∑
i<j

mimj

rij
(2.2)

For n = 2, this problem has two parts, each a one-body problem:
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1. Solving for the motion of the center of mass

2. Solving for the relative motions of each body

2.1.1 Solving for the Motion of the Center of Mass

To solve for the motion of the center of mass, we begin by examining:

F12(r1, r2) = m1r̈1 (2.3a)

F21(r1, r2) = m2r̈2 (2.3b)

Addition of both equations of (2.3) gives us:

F12 + F21 = F12 − F12 = 0

Where we use Newton’s third law F12 = −F21 so if we let:

R̈ =
m1r̈1 +m2r̈2
m1 +m2

Where R is the position of the center of mass of the system, we obtain the
equation:

R̈ = 0

This means that, the velocity of the center of mass is constant, so the total
momentum is constant (so the linear momentum of the system is conserved),
so the location of the center of mass and the velocity can be determined in
the two-body problem.

2.1.2 Solving for the Relative Motions of Each Body

The more difficult case is in solving for the vector r∗ = r1 − r2. Taking each
of the equations (2.3) and dividing each by their respective mass, and then
subtracting the second from the first, we get:

F12

m1

− F21

m2

= r̈1 − r̈2 = r̈∗

So by applying Newton’s third law again, we obtain:

r̈∗ =

(
1

m1

+
1

m2

)
F12
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µr̈∗ = F12

Where µ is the constant effective inertial mass appearing for two-body New-
tonian mechanics:

µ =
1(

1
m1

+ 1
m2

) =
m1m2

m1 +m2

Since the force in question here is gravitational, it varies according to the
inverse square law with respect to r∗ so we can solve for r∗ and then we have
a full solution of the form[1]:

r1(t) = R(t) +
m2

m1 +m2

r∗(t) (2.4a)

r2(t) = R(t) +
m1

m1 +m2

r∗(t) (2.4b)

In the case we are solving for n ≥ 3 bodies, the solution and equations
becomes significantly more complicated, but that is not the goal of this paper.

3 Singularities

The question, now, is how to construct a singularity. In this context, in order
for there to be a singularity, we require from equation (2.1) that rij(t), the
distance between the mith and mjth particle as a function of t, to become
arbitrarily small as t → t∗. We know that a collision between point parti-
cles would be a singularity, but this begs the question, are all singularities
collisions?

Consider a situation in which there are two objects orbiting each other
in such a way that the distance between them becomes arbitrarily small, but
they never “collide.” This means that they “flirt” with collision but never
commit to actually doing so. I’m going to do away with the r∗ notation
and just let it be r because it is clumsy. First, Saari and Xia develop a
“nice” way to describe rij → 0 by letting the configuration of possibilities for
singularities for the particles in question to be given by:

∆ij = {r = (r1, ..., rn) ∈ (R3)n|ri = rj} and ∆ = ∪i<j∆ij

So ∆ is the set of all possible configurations for n points in R3 where equation
(2.1) is undefined. So the oscillatory behavior of the situation just described
would be one such that r(t) admits a sequence {ti}, ti → t∗ where r(ti)
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approaches ∆ but r(t) does not. This means that you can find a sequence
of points that approach t∗ where the sequence defined by {r(ti)} approaches
∆ but the function r(t) does not as t → t∗. The reason why this isn’t a
possibility (at least in the n ≤ 3-body case) is because this requires that rij
is bounded away from 0 (otherwise there would be a collision). More formally,
the lim supt→t∗(rmin(t)) > d > 0, so if we admit the sequence {ti}, ti → t∗,
then we have that all rij(ti) ≥ d. Since this is the case, equations (2.1)
and (2.2) are always bounded above by something finite on the order of 1

d2
.

The velocity is then bounded by equation (2.2) because the bound on U , the
potential energy, gives us a bound on the possible kinetic energy so we get:

T =
1

2

n∑
j=1

mjv
2
j = U + h (3.1)

Where T is the total possible kinetic energy of the system and h is a constant
that comes out of the idea that the amount of energy a system has is relative.
This means that the solution to equations similar to equation (2.4) exist for
values of t ≥ t∗, contradicting the assumption that t∗ is a singularity. Because
of this, we have:

Theorem 1. The n-body problem has a singularity at t = t∗ iff

r(t)→ ∆ as t→ t∗

This theorem was proved by Painlevé in a similar fashion to the sketch in
the paragraph above[3]. There is some ambiguity, though, as Painlevé tells
us that a singularity requires that r → ∆, he doesn’t state anything about
whether or not that the particles must collide. In order to examine this
further, we must say what we mean by a collision singularity more precisely:

Definition 1. A singularity at time t∗ is a collision if there is q ∈ ∆ so
that r(t) → q as t → t∗. Otherwise, the singularity is called a noncollision
singularity.

This means that if there is a specific configuration in which r tends to as
t→ t∗, then there is a collision, and otherwise, it is a noncollision singularity
(i.e. the oscillatory behavior described above). Painlevé proved that for
n = 3, all singularities are collisions, but the paper is in ascii French. My
abilities to read French are limited as is, and ascii French is quite a ways out
of my league.
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3.1 Collision Singularities

To understand why that, for the n = 3 case singularities are always collisions,
we need to relate the maximum and minimum spacing of the particles. In
examining equation (2.2), we note that U−1 can be considered a measure
for rmin(t). To find a description for the maximum distance between two
particles, we can use the square root of the moment of inertia for a system
of point particles, I = 1

2

∑n
j=1mjr

2
j because if we take the center of mass to

be the origin, then the maximum distance will be one of the terms of r2j , so
to get a bound on it, then it can be, at most, the square root of the sums of
the distances. By differentiating I twice and then relating that to equation
(3.1), we get:

Ï = U + 2h (3.2)

This specifies the intuitive relation between particles, such as when any two
particles come close together, rij becomes small so U has a large value which,
in turn, increases the acceleration of the increase of size in the moment of
inertia of the n-body system. The extreme example is such one in which
rmin(t)→ 0 (or, equivalently, U →∞). This means that Ï →∞ by equation
(3.2), which is basically overkill for this proof because all we need is that Ï
is eventually positive because that means that I → A,A ∈ [0,∞]. In the
case that A = 0, that means the moment of inertia of the 3-body system
goes to zero which means they all collide at their center of mass. In the case
A ∈ (0,∞], we use the assumption that rij → 0. Since the moment of inertia
of the triangle defined by the three particles tends to something > 0, and
rmin tends to zero, two of the sides of the triangle are bound away from zero
and the other must shrink to zero. The reason they cannot switch roles in
which side defines rmin, resulting in the oscillatory situation described earlier,
is because the triangle inequality eventually prohibits it when rmin becomes
sufficiently small, so in the limit for rmin, two particles would then collide.
Thus, for a singularity to occur, the three particles must have a collision.

3.2 Non-collision Singularities

After Painlevé proved that all n = 3 singularities were collisions, he wondered
the following:

For n ≥ 4, can r approach ∆ without approaching some point on
the set?
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The next great contributor to answering this was Edvard von Zeipel. He
noted that the inverse square law imposes a negligible acceleration on par-
ticles when they are far apart so as rij becomes large, the trajectories of a
body becomes very much linear and came up with a surprising result:

Theorem 2. A noncollision singularity occurs at time t∗ iff I →∞ as t→ t∗

This intuitively makes little to no sense because it requires that a particle
travels an infinite distance in a finite time. Remember that we are working
under newtonian mechanics and not relativity theory, so there doesn’t exist
an upper bound on the velocity of an object, but it does require that a particle
asymptotically approach the line t = t∗ (so there is no analytic extension of
the solution of the differential equation beyond t∗)[7].

The behavior of these collisions were studied closely by Saari and H.
Pollard where colliding particles were asserted to tend toward each other like
(t − t∗)− 2

3
. The 2

3
exponent comes from the inverse p force law, where the

exponent is 2
p+1

and it happens that Newton’s law is p = 2. This is shown
from the solution of the collinear inverse force relation equation:

r̈ = −(p− 1)r−p

Multiplying both sides by ṙ and then finding the antiderivative,∫
r̈ṙdr = −(p− 1)

∫
ṙr−pdr

Then, for the left hand side,

1

2

∫
(ṙṙ)′dr =

1

2
ṙ2

and for the right hand side,

u = r du = ṙdr

−(p− 1)

∫
ṙr−pdr = −(p− 1)

∫
u−pdu = u1−p + h

where h is a constant of integration. After we resubstitute r for u, we have,

1

2
ṙ2 = r1−p + h
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or,
1

2
ṙ2rp−1 = 1 + hrp−1

so by taking square roots, multiplying by
√

2, and examining the left hand
side,

ṙr
p−1
2 =

√
2(1 + hrp−1)

1
2 .

Which in the limit as rmin → 0 is,

ṙr
p−1
2 →

√
2 as rmin → 0.

Taking one more antiderivative yields:

2

p+ 1
r

p+1
2

which is apparently where the 2
p+1

comes from in the inverse p force law.

The importance of this result lies in the fact that I ∼ A(t− t∗)− 2
3 so we

have, from equation (3.2)[4],

U = Ï + h ∼ A(t− t∗)−
2
3 as t→ t∗ (3.3)

This shows that I and İ are bounded, so in order to create a non-collision
singularity, Ï needs blow up very quickly by having rmin → 0 very rapidly. It
is hard to imagine such a universe that explodes so quickly, but by equation
(3.2), we can find such relations for I so that it goes to infinity faster than
functions similar to ln((t∗ − t)−1) as t→ t∗.

Physically, the key to having this happen without a collision is that par-
ticles must approach other distant particles infinitely often and arbitrarily
closely because as von Zeipel notes[7], the inverse square law has little effect
on particles where rij is large. This means that if we are only considering
a single close-contact interaction, the particles would accelerate, but then,
eventually, move at a nearly constant rate so that the prospects of traveling
an infinite distance in a finite time would be impossible. To bypass this, we
need another close visit with another particle, and then another, and another
and so on, so that we have close visits accumulating in such a way that we
can “boost” the particles acceleration to produce a singularity at t = t∗. An
important question to be asked is: how likely is it that we can have noncolli-
sion singularities existing in a n-body situation? Again, we go to von Zeipel
and another paper by Saari[5]:
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Theorem 3. The set of initial conditions leading to collisions is of first
category.

A set being of first category means that, given a space M , a subset A of M
is of first category if it can be expressed as the union of countably many sets
that are nowhere dense. This means that noncollision singularities for n-body
systems are very unlikely and our goal, now, is to find some constructions
that allow for them.

4 Shooting off to Infinity

The rest of this paper will be devoted to examining different constructions
that produce noncollision singularities in the n-body problem.

4.1 The Mather-McGehee Construction

The 1975 paper by Mather and McGehee showed that for the collinear four-
body problem that binary collisions, collisions between two of the bodies, can
accumulate in such a way to eject particles to infinity in finite time. This
didn’t resolve the Painlevé problem because it requires that a noncollision
singularity must be the first singularity of the system, but it hinted strongly
that a configuration exists. It builds on behaviour of near-triple collision
orbits for the collinear three-body problem.

For binary collisions, the dynamics mimic those of elastic collisions. A
collinear triple is one such that the three bodies collide at the same time, and
a near-triple collision is one in which there are two binary collisions in very
close time proximity to each other. McGehee developed a form of “spherical
coordinates” where the radius of the system is defined by rmax = I

1
2 , so the

“angular coordinates,” 1
rmax

(r1, ..., rn) configuration represents the particles.
Mathematically, this system is defined even for rmax = 0, as it defines the zero
point in ∆. Geometrically, this means that it creates an invariant boundary
manifold C called the “collision manifold.” The solution to the dynamical
system extends smoothly to the C because everywhere inside of it, we have
fine, analytic solutions to the system of differential equations defining the
four-body problem[2]. Since this is the case, we examine a “gradient-like”
flow that occurs on C and make conclusions about near-triple collision mo-
tion.
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The consequences of this set-up is similar to an easy to set up experiment
in which we drop an elastic ball to the ground and then another so that just
as the first rebounds, the second ball collides with it and is transferred extra
momentum, thus resulting in a greater final momentum than initial.

Near-triple collisions behave accordingly. Suppose we have three masses,
m1,m2,m3, such that their motions are restricted to a line with m2 between
m1 and m3. Let m1 and m2 collide and m3 arrive just a little bit late. From
equations (3.1) and (3.3) we find that the rebounding velocity between m1

and m2 can be arbitrarily large since U is unbounded. This results in an
arbitrarily large amount of momentum being exchanged into m3 from m2,
and from the same reasoning as between m1 and m2, m3 leaves the collision
with an arbitrarily large(r) momentum.

However, because we have from equation (3.3), a bound on I as well as
İ, we want to keep m3 from being ejected off into infinity, so we must add
a fourth mass, m4 so that with appropriate timing, m3 will eventually come
into contact with m4 in such a way that will not cause m4 to accelerate
off into the abyss (which only requires that m3 had slowed enough from its
gravitational attraction to m1 and m2 before it collides with m4) so that
it rebounds back toward m1 and m2 bringing with it the same arbitrarily
large momentum that it left with and repeating the cycle. Note that this
also pushes m4 slightly farther away, so with the appropriate choice in initial
conditions, it is conceivable to find a way to cause collisions to happen at
an unbounded rate, which would cause Ï to become unbounded, causing a
noncollision singularity the moment the final particle to join the party has
an acceleration high enough to reach infinity.

4.2 The Xia Construction

Xia’s construction is an attempt to answer Painlevé’s question of whether
or not we could create a configuration like Mather and McGehee except
without using collisions to create a noncollision singularity. By removing the
collisions of the Mather and McGehee construction, we must turn to near
multiple collisions. We proceed by considering again the three-body case in
which we have the motions of m1 and m2 always parallel to the x-y plane and
m3 is restricted to the z-axis. In the two body problem between m1 and m2,
we want the motion of their center of mass to be at rest on some point on the
z-axis and their motions relative to the z-axis to be elliptical with the axis at
one foci. For this solution to occur in the two-body system, they must travel
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symmetrically about their common center of mass. Then we can allow the
eccentricity of their ellipses to become so large their motions become nearly
linear. Then as they make close contact and just as they begin to pass, we
allow m3 to pass by along the axis which causes m1 and m2 to impart an
amount of momentum to m3 which can be arbitrarily large by allowing the
distances between their near collision to become arbitrarily small.

Again, to prevent m3 from shooting off into infinity, we must add another
obstacle. To do so, we add two more masses, m4 and m5 that behave similarly
to m1 and m2 in that they have a fixed center of mass lying on the z-axis
and that they pass arbitrarily close to each other in highly eccentric elliptical
orbits. With a perfect timing, we can allow m3 to pass just before m4 and
m5 have a near collision, which then can impart an arbitrarily large amount
of momentum to m3, launching it back to m1 and m2.

Similarly to the Mather and McGehee, this process can be repeated in-
finitely often in a finite amount of time, which then creates a noncollision
singularity[6].

5 Conclusion

The possibility for a collisionless newtonian n-body system to propel an ob-
ject an infinite distance in a finite amount of time is quite astonishing, as
it, even without considering an upper bound to the potential speed, is coun-
terintuitive that there could then exist a time in which we cannot resolve
“where” an object went. This result, however, can only exist in theoretical
newtonian mechanics because of the aforementioned “upper speed limit” in
the world we live in, so one should take care in considering the possibility of
“coming out of existence” in a non-conventional sense at some time t∗.
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