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1 Introduction

Leonard Gillman, in his paper Classical Surprises Concerning the Aziom of Choice and the
Continuum Hypothesis, published by the American Mathematical Monthly, introduced how
Trichotomy and the Continuum Hypothesis imply the Axiom of Choice. In this paper we will
outline Gillman’s proofs for the Axiom of Choice and discuss why they are important in Set
Theory and beyond. We will define and outline what Trichotomy, the Continuum Hypothesis,
and the Axiom of Choice are and then show how they relate to each other. Interestingly,
both Trichotomy and the Continuum Hypothesis seem completely isolated from the Axiom
of Choice at first glance, but in the early 20th century it was discovered that they both imply
the Axiom of Choice. This discovery allowed for the generalization of the Axiom of Choice
and widened its applications in Mathematics.

2 Definitions

The next few sections are devoted to deriving the Axiom of Choice from Trichotomy and
the Continuum Hypothesis. The following definitions outline the vocabulary needed to
understand the derivations.

e A cardinal number of a set is the number of elements in a set. An infinite set is said
to have infinite cardinal while a finite set is said to have finite cardinal

e The Hebrew letter aleph is the cardinal number of an infinite well ordered set and is
denoted by N

e A well ordered set is one that has a least element

The above definitions are used in the following theorems explaining the relationship
between Trichotomy, the Continuum hypothesis, and the Axiom of Choice.

3 The Axiom of Choice

3.1 Introduction

The Axiom of Choice was formulated by Ernst Zermelo in 1904 and met with much contro-
versy in its early years. It was thought to be dependent on the Zermelo-Fraenkel axioms,
which were the foundations of a branch of set theory, but the discovery that the Axiom of
Choice follows from Trichotomy and the Continuum Hypothesis freed the Axiom of Choice
from dependency.

The Axiom of Choice asserts that for every collection of nonempty sets there is one set
contained in the collection that contains an element from each set in the collection. A formal
statement of the Axiom of choice follows:

Theorem 3.1. For every collection of nonempty sets S, there exists a function F such that
F(S) is a member of S for every possible S



A more general and non rigorous statement of the Axiom of Choice is that if we have an
infinite number of parking places in a lot and each parking place contains one vehicle. Then
it is possible to pick one vehicle from each parking place without knowing which vehicle to
select from each parking place.

The Axiom of Choice is used by many Mathematicians, but is rarely recognized as a
formal statement. In the next two sections we will present two proofs in which the Axiom
of Choice is formalized.

4 Axiom of Choice and the Well Ordering Theorem

An important application of the Axiom of Choice is the Well Ordering Theorem, which states
that every set can be well ordered. Interestingly, the Axiom of Choice is an easy consequence
of the Well Ordering Theorem and both are equivalent to the statement that every infinite
cardinal is an aleph. The following theorems and proofs show this concretely.

Theorem 4.1. The Well Ordering Theorem implies the Axiom of Choice.

Proof. Let S be a collection of nonempty sets. Let A be a well ordered set in S. The idea of
the proof is that the choice function sends each well ordered subset of S to its least element.
O

5 Trichotomy

5.1 Introduction

The Law of Trichotomy states that any two cardinals a and b satisfy exactly one of the
conditions a < b, a = b, or a > b. In more general terms, the Law of Trichotomy guarantees
that every cardinal is either positive, negative, or zero. In 1915 Friedrich Hartogs proved
that Trichotomy implies the Axiom of Choice. The following proof of Hartogs discovery uses
his methods and the outline in Leonard Gillman’s paper.

5.2 Hartogs-Sierpinski Theorem

The proceeding theorem and the theorems proceeding it are stated as they are stated in
Leonard Gillman’s paper:

Theorem 5.1. The cardinal number of a set is the number of elements in a set. To each
infinite cardinal m is associated an aleph N(m) satisfying the relations

and

92m

N(m) < 2



Proof. Let m be an infinite cardinal and M be a set of cardinal m. Since by definition 2
is a subset of M and a subset N of 2™ is a set of subsets of M. By the properties of sets
the elements of N are well ordered. Let W be the set of all subsets N of 2M. Since W is a
set of subsets of 2™, W c 22",

The proof of Theorem 4.1 continues in this way and concludes that R(m) < 22" Tt is
helpful both in the relationship between Trichotomy and the Axiom of Choice and in the
relationship between the Continuum Hypothesis and the Axiom of Choice.

O
Corollary 5.2. No cardinal is greater than all the alephs.

The previous two statements make up Trichotomy and in the next section we will prove
that the two together are equivalent to the Axiom of Choice

5.3 Proof that Trichotomy is equivalent to the Axiom of Choice
Theorem 5.3. The Law of Trichotomy is equivalent to the Axiom of Choice.

Proof. We know that the Axiom of Choice is equivalent to the statement that every infinite
cardinal is an aleph. Therefore we need to reduce the Law of Trichotomy to the statement
that every infinite cardinal is an aleph.

We want to prove the following theorem using Theorem 4.1 and Corollary 4.2. Corollary
4.2 ensures that any two alephs are comparable which implies that any two cardinals are
comparable. Trichotomy is the statement that any two cardinals are comparable. Now we
can assume Trichotomy and consider any infinite cardinal m. By Theorem 4.1, X(m) £ m.
By Trichotomy, ®(m) > m. This inequality implies that m is strictly less than some aleph
and is therefore an aleph. Therefore, all infinite cardinals are alephs. Since the Axiom of
Choice and the Well Ordering Theorem are equivalent and the Well Ordering Theorem is
equivalent to the statement that every infinite cardinal is an aleph, the Axiom of Choice is

equivalent to Trichotomy.
O

6 The Continuum Hypothesis and the Axiom of Choice

6.1 Introduction

The Continuum Hypothesis states that for every infinite cardinal m, there is no cardinal n
satisfying m < n < 2™. Sierpinski was the first mathematician to prove that the Continuum
Hypothesis implies the Axiom of Choice. The following theorems and lemmas outline the
proof of this implication.

6.2 Proof

We want to show the following theorem using the fact that the Axiom of Choice is equivalent
to the statement that every infinite cardinal is an aleph.



Theorem 6.1. The Continuum Hypothesis implies the Axiom of Choice

Proof. The following lemmas are necessary to prove Theorem 5.1

Lemma 6.2. Ifp > N, then 2P +p = 2 - 2P = 2P where p is a cardinal

Proof. We know from the properties of the addition of cardinals that 1 +p = p if p > N,.
Therefore,

WX 4 p< W4 =2.20 =2HP =2p

From the above inequality we get that 2P < 2P +p < 2P 2P + p = 2P, Therefore,
2P +p = 2.2P = 2P which is what we were trying to show.

Lemma 6.3. If a and p are cardinals satisfying 2p = p and a + p = 2P, then a > 2P

Proof. Let P and P’ be disjoint sets of power p, and let A be a set of power a disjoint from
P. Then

|[AUP|=a+p

The previous inequality holds because A N B = ©, A and B’ are representative sets of a
and b, and |AU B| = a + b is the definition of the addition of cardinals when the conditions
on A, B, a, and b are satisfied. Also,

The first inequality is assumed in the theorem and the second equality holds because p is a
cardinal that satisfies 2p = 2, which implies that p is an infinite cardinal. An infinite
cardinal is an aleph and the definition of addition of alephs is Xg + Ry = Ny. This implies
that p+p = p. Also,

oP+p — |2PuP’|

The previous inequality holds because P N P’ = @, P and P’ are representative sets of p,
and |P U P’| = p+ p is the definition of the addition of cardinals when the conditions on P,
P’  and p are satisfied.

We will now use the above equalities to prove Lemma 5.3. Let f be an one to one mapping
of AU P onto 2°°F". Let W be a subset of P’ and let W* be the set W and the elements x
of P that do not belong to the set f(z). Therefore E* is a subset of |P U P’|, and for all x
in P, x is an element of E*. It follows that £* = f(y) for some y in A. FE is any one of the
2P subsets of P’, and the correspondence between E and E* is one-to-one. Therefore there
are 2P sets of the form E*, hence there are 2 corresponding elements y in A. Consequently,
A has at least 2P elements. Thus a < 2P. O

Lemma 6.4. Forn = 1,2, or 3, if

N(m) < pn,



then either m is an aleph or
N(m) S Pn—1-

Proof. We will use the following notations in the proof:

Po=m
pr =200 = 2"
p2 — 2p1 — 22‘"L

ps =27 =22
These p,, statisfy p, < ¥y which means by Lemma 5.2 that
9. 9P — P,
Using the above notation and that X(m) < p, we can see that
Pr—1 < R(m) + poo1 < po+ pp = pp = 20771,

According to the above inequality, p,_1 < X(m) 4+ p,—1 < p,—1. The Continuum Hypothesis
states that for every infinite cardinal m, m < 2™, and there is no cardinal n satisfying

m < n < 2™. Since p,_; is an infinite cardinal and R(m) + p,_; is also a cardinal and

Pn_1 < 277! the inequality on the left of the above expression must be a strict inequality
and the inequality on the right must be an equality. The expression becomes either:

Pr-1 < R(m) + ppog = 2"
or
Pt =R(m) + ppy <277
If X(m) + p,_1 = 2"!, by Lemma 5.3, which states that if 2p = p and a + p = 2P, then
a > 2P with p = p,_; and a = N(m) we get the following inequality
N(m) > 2"t >m

Whence, m is an aleph. If, on the other hand, p, 1 = X(m) + p,_1, the following inequality
is true:

N(m) S Pn—1

Therefore, either m is an aleph or X(m) < p,,—; and Lemma 5.4 follows
O

Theorem 4.1 tells us that R(m) < 22*" — ps. We know from Lemma 5.4 that the inequality
N(m) < p,—1 holds for p;. By Lemma 5.4 either m is an aleph or X(m) < p,_; holds for

n = 2. This implies that either m is an aleph or X(m) < p,,_; holds for n = 1. This implies
that either m is an aleph or R(m) < p,_; holds for n = 0. We know that X(m) < p,,_; does
not hold for n = 0 so m must be an aleph. The fact that m is an aleph is synonymous with
the statement that every infinite cardinal is an alpeh. Therefore Theorem 5.1 holds and the
Continuum Hypothesis implies the Axiom of Choice. m



7 Conclusion

The discovery that the Axiom of Choice follows from both Trichotomy and the Continuum
Hypothesis ensured that the Axiom of Choice is independent of the Zermelo-Fraenkel
axioms and set theory as a whole. This allows the Axiom of Choice to be applied to all
kinds of disciplines. The Axiom of Choice is used in Set Theory to validate comparing
cardinalities of sets. One of the most controversial facts that comparing cardinalities of sets
implies is that different infinities have different sizes and that their sizes can be compared.
Philosophers frequently find this application troubling because it implies something about
infinity, which many people believe is nonexistent and contradictory. The problem is that
the Axiom of Choice is necessary for many proofs and theorems in the field of Mathematics.
It must be assumed for many theorems to make any sense at all. The Axiom of Choice is
generally accepted in Mathematics, but there is still some controversy over its implications.
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