BOGO-SORT 1S SORT OF SLOW

Max Sherman

June 2013

1 Introduction

In this paper, we provide a rigorous analysis of the runtime of the infamous sorting algorithm “bogo-sort”
using only elementary techniques from probability. The material presented draws heavily from Sorting the
Slow Way: An Analysis of Perversely Awful Randomized Sorting Algorithms [2]. We give an overview of the
main results proved in [2] and present the details of these results at a level suitable for an audience with no
prior experience in the field of probability.

2 Motivation

Before jumping head-first into our analysis, it will be helpful to establish some context in order to motivate
the discussion. Bogo-sort is depicted in The New Hacker’s Dictionary [3]. The entry reads:

bogo-sort: /boh‘goh-sort’/ /n./ (var. ‘stupid-sort’) The archetypical perversely awful algorithm
(as opposed to bubble sort, which is merely the generic *bad* algorithm). Bogo-sort is equiv-
alent to repeatedly throwing a deck of cards in the air, picking them up at random, and then
testing whether they are in order. It serves as a sort of canonical example of awfulness. Look-
ing at a program and seeing a dumb algorithm, one might say “Oh, I see, this program uses
bogo-sort.” Compare bogus, brute force, Lasherism.

It is an appropriate question to ask why this analysis is performed at all when various other, more
performant algorithms for sorting exist. The answer is, of course, that we jump at the opportunity to apply
mathematics whenever we are able, even if the “application” serves no discernible purpose. So without
further ado, we eagerly begin our understanding of bogo-sort.

3 Key Terms

In order to fully grasp the arguments presented in this paper, the reader is required to be familiar with
common definitions and notation from elementary probability. Since we do not assume this knowledge, a
brief primer of the relevant terms is provided in the following section. Many of these definitions are taken
from [1].

e Random Variable
A random variable is an expression whose value is the outcome of a particular experiment. Just as in
the case of other types of variables in mathematics, random variables can take on different values.

FEzxzample. If we roll a standard six-sided die, we can represent its value with the random variable X.
Then X € {1,2,3,4,5,6}.

MAX SHERMAN 2

e “P” Notation
“P” notation is used to represent the probability of an outcome of a random variable, and typically
takes the form P(X ~ a) = p, where X is a random variable, ~ is some relation, a is a number, and p
is the probability that the expression inside the parentheses is true.

Ezxample. Using the die example from before, since the probability of rolling any of the six numbers
on the die is equal, we can write

2
P(X <4)= 3
to mean that the probability is 2/3 that a roll of a die will have a value which does not exceed 4.

e Sample Space
The sample space is the set of values that a random variable is allowed to attain. Said differently, it is
the set of all possible outcomes. Sample spaces are commonly denoted as 2.

Ezample. For the roll of a single die, Q = {1,2,3,4,5,6}, as these are the only values in which a die
roll can result.

e Distribution Function
A distribution function is a function that assigns a nonnegative number to an outcome of an experiment
such that if m(z) is a distribution function of a random variable, then

Z m(x) = 1.

zeQ

FEzample. Flipping a fair coin has two outcomes, and typically these outcomes are assigned equal
probability. In this case our sample space is given by Q = {H, T}, and m(H) = m(T) = 0.5.

¢ Expected Value
Let X be a numerically-valued random variable with sample space 2 and distribution function m(z).
The expected value E(X) is defined by

E(X)= Z xm(z).

e

The expected value represents the value we would probably get by repeating the experiment a sufficient
number of times. It is somewhat like the average value in this sense. A fact we will use later about
the expected value is its linearity.

Example. We can compute the expected value of the roll of a single die, denoted by the random variable
X. Note that the probability distribution function for each outcome is 1/6. The formula gives
x 1 2 3 4 5 6

FE(X)= —=—-4+-4+-4+-+-+-=3.5.
(X) Z 6 6+6+6+6+6+6
2€{1,2,3,4,5,6}

This value is also the average of all of the possible outcomes of a die roll.

e Independence
Two events E and F' are independent if P(E) and P(F') are unrelated. Said differently, if E' occurs, it
has no effect on the probability that F' will occur, and vice versa.

FEzxzample. Flipping a coin is an independent event, since the result of any given flip, in no way affects
the result of any subsequent flip.

MAX SHERMAN 3

e Geometric Distribution
The geometric distribution is the probability that the first occurrence of success requires k number of
independent trials, each with success probability p. If the probability of success on each trial is p, then
the probability that the kth trial is the first success is

P(X=K)=(1-p)"p.

The expected value of a geometrically distributed random variable is given by E[X] = 1/p.

Example. Suppose an ordinary die is thrown repeatedly until the first time a 1 appears. We can model
this with a geometric distribution on the number of rolls, which is a member of the set {1,2,3,...},
with p = 1/6. The expected number of rolls until we produce a 1 is (1/6)~! = 6.

e Big O Notation
While it is a slight departure from the flavor of the previous terms, it is also useful to understand big
O notation. It is the lingua-franca of algorithm analysis.
A function f(n) is said to be O(g(n)) if f(n) < c¢-g(n) for all n > ng for some fixed ng, and some
fixed c. So, this notation is a way of assigning upper bounds to functions, or in our case, algorithms.
Algorithms are modeled as functions mapping from an input of size n, to the number of “steps” required
to terminate.

Ezample. A program is said to run in linear time if it is O(n). If we have a program that prints every
number from 1 to a supplied input number n, then this program runs in linear time, since it executes
n steps, which is proportional to the input, by a multiplicative factor of one.

4 Bogo-sort Implementation

Bogo-sort’s implementation is simple, so we provide it in the pseudocode below.

Algorithm 1: Bogo-sort.

Input array a[l...n]

while a[l...n] is not sorted do
| randomly permute a1 ...n]

end

Much like the method of sorting a deck of cards described in the Hacker’s Dictionary quote above, we see
that bogo-sort takes in an array, checks that it’s sorted, and if it isn’t, shuffles the elements, then repeats.
We describe the pseudocode for the sortedness checking routine, and the random permutation routine below.

Procedure Sorted.
(Returns true if the array is sorted, and false otherwise.)

fori=1ton—1do
if a[i] > a[i + 1] then
‘ return false
end
end
return true

There are a few things to note from looking at these algorithms. The first observation one might make
is that this algorithm is not guaranteed to terminate. It appears possible that we continue inside the while-
loop forever, each iteration being one where the Randomly Permute procedure shuffles the array into another

MAX SHERMAN 4

Procedure Randomly Permute.
(Permutes the array.)

fori=1ton—-1do
j:=rand[l...n]
swap a[i] and a[j]
end

unsorted state. Interestingly, the probability of the runtime for the algorithm being infinite is zero. Let T
be a random variable denoting the runtime, then by Markov’s Inequality

T
P(TZt)gy, t>0.

Later, we will prove that the expected running time, E[T] is finite, so for a program running for ¢, as ¢ grows
large the probability that T > t decreases to zero.

Another important factor to note is that inside the Randomly Permute procedure, we just loop through
the array once, meaning the procedure is O(n) and therefore linear. Similarly, in the Sorted procedure, we
loop through the array from left to right, so Sorted is linear as well.

Finally, notice that the check to see if the array is sorted is performed initially when we begin the
algorithm. Because of this, if we are lucky enough to be handed an already-sorted array, bogo-sort will
terminate in linear time, and nothing will ever be permuted. In the next section, we detail our plan of attack
for analyzing bogo-sort.

5 Plan of Attack

Now that we have built up a strong foundation by establishing relevant terminology, defining bogo-sort, and
making several observations about the algorithm, we can discuss how our analysis will proceed.

We will analyze the expected running time for bogo-sort in the standard context that we are given an
array T = I1Zs ... T, containing a permutation of the set of numbers {1,2,...,n}. To analyze the running
time of the algorithm, which is a comparison-based sorting algorithm, we follow the usual convention of
“counting on one hand the number of comparisons, and on the other hand the number of swaps”. Swaps
and comparisons are going to be the two metrics quantifying how long the algorithm runs for. The theorems
that follow will prove the expected value for the number of swaps and comparisons that bogo-sort performs
under certain restrictions. The expressions obtained will give the expected value in the best, worst, and
average cases.

6 Analysis

Our analysis is divided into parts, each analyzing a separate component of bogo-sort.

6.1 Comparisons Required to Check an Array for Sortedness

The first section of the algorithm we analyze is the expected number of comparisons that the Sorted procedure
performs every time it is called. This analysis is carried out for two different types of input arrays.

6.1.1 The Basic Case

In the basic case, let the input T be an array with n elements, each of which is distinct. Before we state and
prove a theorem, we make the following observation.

MAX SHERMAN 5

Observation 1. If the kth element in the list is the first one which is out of order, the algorithm makes
exactly k — 1 comparisons (from left to right) to detect that the list is out of order.

Theorem 2. Assume T is a random permutation of {1,2,...,n}, and let C denote the random variable
counting the number of comparisons carried out in the test whether T is sorted. Then

E[C] =

1
Tge—l

M |

=1

Proof. For 1 < k < n, let I be the random variable indicating that at least the first k£ elements in T are
in order. Ij is an indicator function here, so as an example, if the first 3 elements are sorted, Is = 1, and
if not then I3 = 0. A first observation is that I, = 1 <& C > k. For on one hand, if the first k£ elements
are in order, then at least k comparisons are carried out before the for-loop is exited. On the other hand,
if the routine makes a minimum of k comparisons, the kth comparison involves the elements xj and g4,
and we can deduce that 1 < 5 < --- < xp_1 < xx. The inequalities are strict here since every element in
T is distinct, although in general, sortedness allows two elements who are equal to reside next to each other
inside Z.

Since this bi-conditional is true, it must be the case that P[C' > k] = P[I}]. The probability on the right
hand side can be computed as

() - (n = &)!

n!

P[L] =

The numerator is the product of the number of possibilities to choose k first elements to be in the correct
order and the number of possibilities to arrange the remaining n — k elements at the end of the array. The
denominator is the total number of arrays of length n. Reducing this fraction, we obtain P[I;] = (k!)~'. By
noting that [} is either 0 or 1, we can directly apply the definition of expected value to get

— n—1
Z Z Z 1 1 1
k>0 k>0 k=1 k=0

The expression on the far right is the truncated Taylor series for the exponential function evaluated at 1, so
we obtain our result. O

Theorem 2 tells us that given an array with distinct elements, we only need a constant number of
comparisons on average to check if a large array is sorted, and when n is large, this constant approaches
from below e — 1 &~ 1.72. In the worst case, we must check the entire array, and so compare n — 1 times.

6.1.2 Arrays with Repeated Entries

Now we consider the case when the input array is filled with n numbers that may or may not be distinct.

Theorem 3. Assume T is an array chosen from {1,2,... ,n}"™ uniformly at random, and let C' denote the
random variable counting the number of comparisons carried out in the test whether T is sorted. Then

E[c]::z:ji(";*’“) (1) ~e-t

That is, E[C] approaches e — 1 as n — oo.
Proof. The random variable C' takes on a value of at least k, for 1 < k < n — 1, if the algorithm detects
that the array is out of order after the kth comparison. In this case T takes a form where it starts with an

MAX SHERMAN 6

increasing sequence of numbers of length k, each chosen from {1,2,...,n}, and the rest of the array can be
filled up arbitrarily. So, the form of Z can be represented as

111202 ple x| x
—

k n—k

where t;1 +to+...+t, =k and t; > 0, for 1 < i < n. So to find a form for the expected value, we need to
determine how many ways an integer k£ can be expressed as a sum of n nonnegative integers. To see this, we
appeal to intuition with the following argument.

Imagine that there are k pebbles lined up in a row. If we put n — 1 sticks between the pebbles, we will
have partitioned them into n groups of pebbles, each with a nonnegative amount of pebbles. Note that we
may have sticks next to each other, meaning some groups of pebbles are empty. Another way to look at this
scenario is that there are n — 1 4+ k spots, and we must pick n — 1 of these spots to contain sticks. This is
equivalent to choosing k pebbles. Therefore, there are ("_;+k) correct arrangements for the first & elements
of our array, and since we have n choices for each of the n — k remaining elements, there are n™~* possible
arrangements for the remaining elements. So the number of arrays with the first k£ elements sorted is the

quantity ("71+k)n"_k, and
n—1+k 1\"
P|IC > k| = —

k
which we obtain by dividing the number of arrays that have at least their first k& elements sorted, by the
total number of arrays possible in {1,2,...,n}", which is n™. Using the same “trick” as in Theorem 2 where
we encode the probability that the kth element is sorted with the indicator variable Iy, which is either 1 or
0, we can apply the definition of expected value to get

w-Ere=i-5 (1) ()

LR GOEE

where z = 1/n in the final expression. Next, we consider both of these sums in (2). By elementary calculus
on generating functions we have the identity

N (n—1+ k‘) & 1

= — (3)
2 ()
which, when we substitute back in = 1/n, the right side becomes (#) . Now we would like to obtain

a nice expression for the other sum in (2). Unfortunately this is a little more difficult, but nonetheless
manageable. First re-index the sum so that it becomes

S~ (n—14+k\ , = (2n—1+k\ , s
S (e (e

Now we can estimate this sum by noting that

(2” —kl + k’) < 92n—l+k,

So we obtain a bound of the form

Z <2n -1+ k) Crn—i—k < Z 22n—1+kxn+k _ 22n—11,n Z(Qx)k
n+k

MAX SHERMAN 7

This is a geometric series valid for z < %, or n > 2, so we can substitute in its closed form expression to get

i 2n—1+k xn+k<22n71xn;:1 é ! n
k=0 n+k o =2z 2\n n-2

So using (2) and (3) we can bound E[C] in the following way

(nnl)n‘;@)nan—léE[Cls (nnl)n—l.

Taking limits of both the upper and lower bounds as n — oo is an elementary calculation, and we see that
both quantities approach e — 1, so E[C] approaches e — 1 as n grows large. O

6.2 Computing the Expected Number of Swaps in Bogo-sort

We have already remarked that in the case when Z is already sorted when it is provided as an input to
bogo-sort, the algorithm runs in linear time, and the expected number of swaps is 0. The following theorem
deals with the case where the initial array is not already sorted.

Theorem 4. If S denotes the total number of swaps carried out for an input T of length n, where all the

elements are distinct, then
0 if T is sorted
Els) = { (n—1)n! otherwise.

Proof. In each iteration of the while-loop in bogo-sort, the array is permuted uniformly at random, and this
will be done until we eventually permute all of the elements into an order which is increasing. In the case
where all the elements are distinct, there is only one such ordering, out of n! possible arrangements. So the
probability of being sorted after one shuffle is (n!)~!. This behavior is modeled by a geometric distribution,

so applying the formula we obtain _
. nl—1\" 1

where I is a geometrically distributed random variable with probability p = (n!)~! of being the iteration
where we produce a sorted array. By the formula given in the previous definition of geometric distributions,
this implies that E[I] = p~! = nl.

For every iteration, we perform exactly n—1 swaps, and these are the only swaps performed by bogo-sort.
Let S denote the random variable counting the number of swaps, and we see that S = (n—1)I. By linearity
of expectation, we get that E[S] = (n — 1)n! in the case when Z is not initially sorted. O

This result lends itself to a more applicable corollary. Recall that we are quantifying the algorithm’s perfor-
mance in terms of the number of swaps and comparisons it performs. The less swaps performed, the better
we are doing.

Corollary 6. If S denotes the total number of swaps carried out for an input T of length n, we have

E[S] = 0 in the best case,
“ 1 (n—1)n! in the worst and average case.

6.3 Computing the Expected Number of Comparisons in Bogo-sort

In this section we count the expected number of comparisons that bogo-sort performs in the best, worst, and
average case. In order to reason about this, we will think about the number of iterations bogo-sort makes,
denoting this with the random variable I. An iteration includes one instance of permuting the elements of

MAX SHERMAN 8

the input array Z, and then one instance of checking to see if Z is sorted. Let {C;};>0 be a sequence of
random variables where C; denotes the number of comparisons performed on the ith iteration. Then the
total number of comparisons C' for an input Z is given by the sum

To study the expected value of this quantity, we will use Wald’s Equation [4]. For convenience, we restate
the theorem.

Theorem 7 (Wald’s Equation). Let {X;}o<;<n be a sequence of independent, identically distributed
random variables, and let the number of these random variables N be a random variable. Then

E[X] = E[Xo+ X, + ...+ Xy] = E[X(] - E[N].

This statement of Wald’s Equation could be relaxed by removing the need for the variables to be iden-
tically distributed, but this allows us to write the right hand side of the equation above as E[X;] - E[N] for
any 0 < i < N, since the X;’s in the theorem will correspond to the C;’s in our analysis of bogo-sort, which
are each identically distributed. With Wald’s Equation firmly in our toolbox, we can compute the expected
number of comparisons.

Theorem 8. Let C' denote the number of comparisons carried out by bogo-sort on an input T of length n
with distinct elements, and let ¢(T) denote the number of comparisons needed by the algorithm to check T for
being sorted. Then

_fem)=n-1 if T is sorted,
ElC] = { c(z)+ (e —1)n! — O(1) otherwise.

Proof. First we address the random variable Cj, since it has a different probability distribution from C;
for ¢ > 1. Its value is determined by Z, in fact P[Cy = ¢(Z)] = 1. So by linearity of expectation, E[C] =
c(z) + E[Zle C;]. In the case where Z is initially sorted, the first Cy comparisons are the only ones
performed, so we're done. If Z is not initially sorted, then sadly we must consider the latter sum, and
attempt to produce meaningful results from it.

The random variables {C;};>1 are independent and identically distributed. I is a random variable, so
we can apply Wald’s Equation to get E[Zi[=1 C;] = E[C4] - E[I]. After the first shuffle, we have a random
permutation of the distinct elements of T, and we test it for sortedness. Theorem 2 gives the expected value
of E[C1] = e—1—0(2). We subtract off the O(-) term to account for only a finite number of elements in
Z being compared. A consequence of the proof of Theorem 4 gives us that E[I] = n!. Multiplying these two
quantities together a-la Wald’s Equation gives us the desired result. O

Corollary 9. Let C denote the number of comparisons carried out by bogo-sort on a given input T of length
n with all its elements distinct. Then

n—1 in the best case,
ElC] =< (e—1)n!+n—0(1) in the worst case,
(e—1Dn!+0() in the average case.

Proof. In the best case, the input array is already sorted, and so the total number of comparisons performed
is n — 1. In the worst case, Z is not initially sorted, but we need n — 1 comparisons to detect this at first.
This would happen in the case when the array is completely sorted except for the last element. Applying
Theorem 8, we obtain E[C] = (e — 1 — O(Z))n! + n — 1. For the average case, we apply Theorem 8 in the
same way, except we substitute n— 1 comparisons for the average number of comparisons ¢(Z) = e—1— O(%)
from Theorem 2. [

MAX SHERMAN 9

7 Conclusion

We analyzed the notoriously bad algorithm bogo-sort, and gave several expectations for the running time,
quantified in terms of swaps and comparisons, of the algorithm under certain circumstances. These include:

e The expected number of comparisons bogo-sort performs on an array with distinct elements on a given
iteration (Theorem 2).

e The expected number of comparisons bogo-sort performs on an array with possibly non-distinct ele-
ments on a given iteration (Theorem 3).

e The expected number of swaps bogo-sort performs on an array with distinct elements for its entire
duration (Corollary 6).

e The expected number of comparisons bogo-sort performs on an array with distinct elements for its
entire duration (Corollary 9).

In the average and worst case, bogo-sort is expected to carry out O(n-n!) swaps, and this is how its runtime
is usually stated. In case it has been buried under the formalism of this paper, we dedicate this final part of
the conclusion to ensuring that the reader truly grasps how terrible bogo-sort is at sorting.

If we make the generous assumption that bogo-sort performs exactly n - n! operations on an array of
length n before terminating, and that each operation takes exactly one nanosecond (one billionth of one
second), then how long can we expect to have to wait before an array of 20 elements is sorted? Given our
assumptions, bogo-sort will spend 1.5 millennia sorting this array. How awful! E| For a possibly more helpful
metric, the popular sorting algorithm “quicksort” has an average runtime of O(nlogn), and under the same
assumptions as before, an array of 20 elements is expected to be sorted in approximately 60 nanoseconds.
Stated differently: bogo-sort is sort of slow.

So unfortunately, the results of this paper may not wind up being referenced by millions of computer
science students after all ﬂ However, the methods used to analyze bogo-sort were just direct applications
of elementary probability, and we have been offered a lot of “bang for our buck” in the sense that we have
been able to prove a lot of results using a very limited pool of knowledge.

LAn array of 100 elements will sort in approximately 10'4° millennia. This is really bad.
2Fingers crossed!

MAX SHERMAN 10

References

[1] Charles M. Grinstead, and J. Laurie Snell, Introduction to Probability, 1998.

[2] Hermann Gruber, Markus Holzer, and Oliver Ruepp, Sorting the Slow Way: An Analysis of Perversely
Awful Randomized Sorting Algorithms, 2007.

[3] E. S. Raymond, The New Hacker’s Dictionary, 1996.

[4] Weisstein, Eric W. “Wald’s Equation.” From MathWorld—A Wolfram Web Resource. http://mathworld.
wolfram.com/WaldsEquation.html

http://mathworld.wolfram.com/WaldsEquation.html
http://mathworld.wolfram.com/WaldsEquation.html

	Introduction
	Motivation
	Key Terms
	Bogo-sort Implementation
	Plan of Attack
	Analysis
	Comparisons Required to Check an Array for Sortedness
	The Basic Case
	Arrays with Repeated Entries

	Computing the Expected Number of Swaps in Bogo-sort
	Computing the Expected Number of Comparisons in Bogo-sort

	Conclusion

