Easy Maximum Principle

Theorem 1. Suppose u is bounded and harmonic in a bounded open set Ω . Suppose $\limsup_{z\to n\in\partial\Omega}u(z)\leq M$ for all $p\in\partial\Omega$. Then $u(z)\leq M$.

Proof. Let $\delta>0$. Let $W=\{z:z\in\Omega,u(z)>M+\delta\}\subset\Omega$. Then $\overline{W}\subset\overline{\Omega}$, so $\partial W\subset\Omega\cup\partial\Omega$. First we prove that $\partial W\cap\partial\Omega=\emptyset$. For if $p\in\partial\Omega$ then $\limsup_{z\to p\in\partial\Omega}u(z)\leq M$. But if $p\in\partial W$ then $\limsup_{z\to p\in\partial W}u(z)\geq M+\delta$. So $\overline{W}\subset\Omega$ and u is continuous on \overline{W} . Now a point p in ∂W must contain points in W and points not in W. Since u is continuous, if $u(p)>M+\delta$, so are nearby points (W is open). So it must be the case that $u(p)\leq M+\delta$. In other words $u(p)\leq M+\delta$ for points $p\in\partial W$. By the maximum principle $u(p)\leq M+\delta$ for all $p\in W$. This contradicts the definition of W. So $W=\emptyset$. In other words $u(p)\leq M+\delta$ for all $p\in\Omega$. Since $\delta>0$ is arbitrary, $u(p)\leq M$ for all $v\in\Omega$.