Math 336 Sample Problems

One notebook sized page of notes will be allowed on the test. The test will cover through section III.5 in Gamelin.

1. Suppose $Re(z_i) \geq 0$ for $j \geq 1$ and suppose the series

$$z_1 + z_2 + \dots + z_n + \dots$$

 $z_1^2 + z_2^2 + \dots + z_n^2 + \dots$

both converge. Prove that

$$|z_1|^2 + |z_2|^2 + \dots + |z_n|^2 + \dots,$$

converges.

- 2. Let $f(z) = x^2 y^2 + i \log(x^2 + y^2)$. Find the points at which f is complex differentiable. Find the points at which g(z) = x iy is complex analytic.
- 3. Let f(z) = u(z) + iv(z), u = Re(f(z)), v = Imf((z)) be analytic on an open connected set Ω . Suppose there are real numbers a, b, c with $a^2 + b^2 \neq 0$ and au(z) + bv(z) = c for all $z \in \Omega$. Prove that f is constant.
- 4. Suppose that v is the harmonic conjugate of u and u is the harmonic conjugate of v. Show that u and v must be constant.
- 5. Let u be harmonic on W. Prove that $f(z) = u_x(z) iu_y(z)$ is harmonic.
- 6. Let a be a complex number and suppose |a| < 1. Let $f(z) = \frac{z-a}{1-\overline{a}z}$. Prove the following statements.
 - (a) |f(z)| < 1, if |z| < 1.
 - (b) |f(z)| = 1, if |z| = 1.
- 7. Let $f(z) = e^{-z^{-4}}$ if $z \neq 0$, f(0) = 0. Prove that f is analytic at z if $z \neq 0$ and that the Cauchy-Riemann equations are satisfied at 0. Is f analytic at 0?

Sample Problems 2

8. Let $z_j = e^{\frac{2\pi i j}{n}}$ denote the n roots of unity. Let $c_j = |1 - z_j|$ be the n-1 chord lengths from 1 to the points $z_j, j = 1, \ldots, n-1$. Prove that the product $c_1 \cdot c_2 \cdots c_{n-1} = n$. Hint: Consider $z^n - 1$.

- 9. Find a sequence of complex numbers z_n such that $\sum_{n=1}^{\infty} z_n^k$ converges for every k=1,2... but $\sum_{n=1}^{\infty} |z_n|^k$ diverges for every k=1,2... Hint: Try $z_n = \frac{e^{2\pi i n s}}{\log(n+1)}$ for an appropriate real number s.
- 10. Suppose f is analytic on a connected open set. Assume $f^2 = \overline{f}$. Prove that f is constant. What are the possible values of the constant?
- 11. You will need to know the definitions of the following terms and statements of the following theorems.
 - (a) Modulus (absolute value) and argument of a complex number
 - (b) Complex derivative
 - (c) Complex analytic function
 - (d) Cauchy-Riemann equations
 - (e) Harmonic functions and harmonic conjugate
 - (f) Complex exponential function and trigonometric functions
 - (g) Complex logarithm and powers
 - (h) Linear fractional transformations
 - (i) Mean value principle
 - (i) Maximum principle
- 13. There may be homework problems or example problems from the text on the midterm.