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This note will discuss some norms on Rn that are most useful in analysis. In Folland’s book there is
only one norm used and it is denoted by |x|. In this note norms will be denoted by double bars, ||x||.

The Euclidean norm, ||x||2 = (x21 + x22 + . . . x2n)1/2 is the norm that is commonly used in definitions
of such things as continuity and differentiability. Sometimes it is inconvenient and proofs are more easily
made using a different norm or a mix of two norms. A norm is a way of measuring the size of a vector by
assigning to it a non-negative number with certain simple properties. A norm is a special type of metric
defined on a vector space. The following are the defining properties of a norm.

||x|| ≥ 0, and ||x|| = 0 implies x = 0 (1)

||ax|| = |a|||x||, where a ∈ R (2)

||x+ y|| ≤ ||x||+ ||y||, triangle inequality (3)

The following are norms we will find useful.

1.
||x||∞ = max{|x1|, |x2|, . . . , |xn|}, the sup or ∞-norm

2.
||x||1 = |x1|+ |x2|+ · · ·+ |xn|, the 1-norm

3.
||x||2 = (x21 + x22 + . . . x2n)1/2, the Euclidean or 2-norm

4.
||x||p = (|x1|p + |x2|p + . . . |xn|p)1/p, p ≥ 1, the p-norm

It’s easy to verify that the ∞-norm and 1-norm satisfy the triangle inequality. The triangle inequality for
the p-norms with p > 1 is not trivial. The proof will be given post on arithmetic-geometric mean on the
class website.

The norms are all equivalent in a way that makes it possible to define continuity and limits in a flexible
way. This is the simplest version of that equivalence.

Theorem 1.

||x||1 ≥ ||x||2 ≥ ||x||∞ ≥
1

n
||x||1.

Proof. Let m be the index for which |x|m = ||x||∞. Then(
n∑
1

|xj |

)2

≥
n∑
1

|xj |2 ≥ |xm|2.
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This proves the first two inequalities. Also

n||x||∞ = n|xm| ≥
n∑
1

|xj | = ||x||1

since |xj | ≤ |xm| for all j. This proves the theorem.

The next result demonstrates how the norms can be mixed in a statement.

Theorem 2. Let f : Rn → Rm be defined in a neighborhood of a point a ∈ Rn. Suppose we can prove
that for every ε > 0 there is a δ > 0 such that ||x − a||1 < δ implies that ||f(x) − f(a)||∞ < ε. Then f is
continuous at a.

Proof. If we can make ||f(x)−f(a)||∞ <
ε

n
then it will follow that ||f(x)−f(a)||2 < ε since ||y||2 ≤ ||y||1 ≤

||y||2 for any y. We can make ||f(x)− f(a)||∞ <
ε

n
by choosing ||x− a||1 < δ. Now if ||x = a||2 <

δ

n
then

||x = a||1 < δ and so ||x = a||2 <
δ

n
implies ||f(x)− f(a)||2 < ε.

By the same type of reasoning we can prove the following theorem

Theorem 3. Let f : Rn → Rm be defined in a neighborhood of a point a ∈ Rn. f is continuous at a if for
any ε > 0 there is a δ > 0 so that if ||x− a||p < δ then ||f(x)− f(a)||q < ε.


