Norms on \mathbb{R}^{n}

October 7, 2013

Theorem 1. All norms on \mathbb{R}^{n} are equivalent (even norms you never heard of). In other words if $||\mid$ and $\|$ are norms then there are positive constants a, b such that

$$
a|\|v\|| \leq\|v\| \leq b \mid\|v\|, \forall v \in \mathbb{R} .
$$

Proof. Let \| be any norm. We will prove that there are $a>0, b>0$ so that

$$
a\left|\| v \| \| < \| v \left\|_{2}<b|\|v \mid\| .\right.\right.
$$

This will be good enough. First let $v=x_{1} e_{1}+x_{2} e_{2}+\ldots x_{n} e_{n}$, where $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ is a basis for \mathbb{R}^{n}. By the triangle inequality

$$
\|v\| \leq \sum_{j}\left|x_{j}\right| \| e_{j}| | .
$$

By Cauchy's inequality, for the inner product $\sum_{j}\left|x_{j}\right|\left|e_{j}\right| \mid$,

$$
\sum_{j}\left|x_{j}\right|\left\|e_{j}\right\| \leq\left(\sum_{j} x_{j}^{2}\right)^{1 / 2}\left(\sum_{j}\left\|e_{j}\right\|^{2}\right)^{1 / 2}
$$

so

$$
a\|v\| \leq\|v\|_{2}, \text { where } a=1 /\left(\left(\sum_{j}\left\|e_{j}\right\|^{2}\right)^{1 / 2}\right) .
$$

Next consider the function $\|\mid v\| \|$ on the set $\sum_{j} x_{j}^{2}=1$. Let $m>0$ be its minimum. By what we have just proved the function $v \rightarrow\|v\|$ is continuous on \mathbb{R}^{n}, meaning that if $\left\|v_{j}\right\|_{2} \rightarrow 0$ then $\left\|v_{j}\right\| \rightarrow 0$. Also the set $v:\|v\|_{2}=1$ is compact (closed and bounded). Now let v be any vector and let $u=v /\|v\|_{2} \in \mathbb{R}^{n}$. Then $\|u\|_{2}=1$ so $\|\|u\| \geq m$. Hence

$$
\||v|\| \geq m\|v\|_{2}, \text { or }\|v\|_{2} \leq b \mid\|v\|, \text { where } b=1 / m \text {. }
$$

