
Ax = b and Ax = 0

Theorem 1. Let A be a square n× n matrix. Then Ax = b has a unique solution if and only if the only
solution of Ax = 0 is x = 0. Let A = [A1, A2, . . . , An]. A rephrasing of this is (in the square case) Ax = b
has a unique solution exactly when {A1, A2, . . . , An} is a linearly independent set.

Proof. First, if Ax = b has a unique solution (call it x1), then Ay = 0 can’t have nonero solution. For if
we have Ay = 0 with y 6= 0 then x1 + y would give a new solution of Ax = b.

So assume the only solution of Ax = 0 is x = 0. Consider the equations

a11x1 + a12x2 + · · ·+ a1nxn = 0

a21x1 + a22x2 + · · ·+ a2nxn = 0

... = 0

an1x1 + an2x2 + · · ·+ annxn = 0

The coefficients of x1 cannot all be 0 or else x1 = 1, x2 = 0, . . . , xn = 0 would be a non zero solution of
Ax = 0. By rearranging the equations we may assume a11 6= 0 and subtract multiples of the first equation
from the rest to produce a new set of equivalent equations

a11x1 + a12x2 + · · ·+ a1nxn = 0

+ a22x2 + · · ·+ a2nxn = 0

... = 0

+ an2x2 + · · ·+ annxn = 0,

where I have used the same letters aij to represent the new equivalent equations (which still only have
x = 0 as solution). Proceeding in a similar manner (perhaps by interchanging some rows) we get a set of
equivalent equations (new notation) of the form

Ux =


u11 u12 u13 . . . u1n
0 u22 u23 . . . u2n
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . unn



x1
x2
...
xn

 =


0
0
...
0


where every ukk 6= 0. Now if we perform the identical steps on the system Ax = b we find an equivalent
set of equations of the form

Ux =


u11 u12 u13 . . . u1n
0 u22 u23 . . . u2n
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . unn



x1
x2
...
xn

 =


c1
c2
...
cn


1



2

Where the ck are the result of applying the same operations on the bk. This is a summary of Gauss
elimination. The final set of equations Ux = c has a unique solution and this solution is the unique
solution of Ax = b.


