$$
A x=b \text { and } A x=0
$$

Theorem 1. Let A be a square $n \times n$ matrix. Then $A x=b$ has a unique solution if and only if the only solution of $A x=0$ is $x=0$. Let $A=\left[A_{1}, A_{2}, \ldots, A_{n}\right]$. A rephrasing of this is (in the square case) $A x=b$ has a unique solution exactly when $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ is a linearly independent set.

Proof. First, if $A x=b$ has a unique solution (call it x_{1}), then $A y=0$ can't have nonero solution. For if we have $A y=0$ with $y \neq 0$ then $x_{1}+y$ would give a new solution of $A x=b$.

So assume the only solution of $A x=0$ is $x=0$. Consider the equations

$$
\begin{array}{ll}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =0 \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & =0 \\
\vdots & \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n} & =0
\end{array}
$$

The coefficients of x_{1} cannot all be 0 or else $x_{1}=1, x_{2}=0, \ldots, x_{n}=0$ would be a non zero solution of $A x=0$. By rearranging the equations we may assume $a_{11} \neq 0$ and subtract multiples of the first equation from the rest to produce a new set of equivalent equations

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=0 \\
& \quad+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=0 \\
& \vdots \\
& \quad+a_{n 2} x_{2}+\cdots+a_{n n} x_{n} \\
&=0
\end{aligned}
$$

where I have used the same letters $a_{i j}$ to represent the new equivalent equations (which still only have $x=0$ as solution). Proceeding in a similar manner (perhaps by interchanging some rows) we get a set of equivalent equations (new notation) of the form

$$
U x=\left[\begin{array}{ccccc}
u_{11} & u_{12} & u_{13} & \ldots & u_{1 n} \\
0 & u_{22} & u_{23} & \ldots & u_{2 n} \\
\ldots & \ldots \ldots . \ldots \ldots \\
0 & 0 & 0 & \ldots & u_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

where every $u_{k k} \neq 0$. Now if we perform the identical steps on the system $A x=b$ we find an equivalent set of equations of the form

$$
U x=\left[\begin{array}{ccccc}
u_{11} & u_{12} & u_{13} & \ldots & u_{1 n} \\
0 & u_{22} & u_{23} & \ldots & u_{2 n} \\
\ldots & \ldots . . \ldots \ldots \\
0 & 0 & 0 & \ldots & u_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right]
$$

Where the c_{k} are the result of applying the same operations on the b_{k}. This is a summary of Gauss elimination. The final set of equations $U x=c$ has a unique solution and this solution is the unique solution of $A x=b$.

