
Getting Some Big Air

Control #10499

February 14, 2011

Abstract

In this paper we address the problem of optimizing a ramp for a snow-
boarder to travel. Our approach is two sided. We first address the “for-
ward problem” of modeling the motion of a snowboarder on a ramp as-
suming a given ramp and initial conditions for the snowboarder. We
derive a second order ODE which we solve numerically. The second as-
pect of our approach, and arguably the more interesting and useful, is the
“variational problem”, i.e. finding the optimal ramp for a snowboarder to
travel on, given initial conditions for the snowboarder and a given jump-
ing strategy for the snowboarder. To do this, we consider the space of all
possible halfpipe curves and maximize final angular velocity by applying
an adapted version of the Euler-Lagrange equations in several variables.
We use use Taylor series approximations to get a differential equation that
is numerically tractable. The solution to this differential equation traces
out a curve which represents an approximation to a candidate solution for
a local extremum to the vertical velocity of a snowboarder on the halfpipe.
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1 The Forward Problem

1.1 Statement of the Problem

We define the “forward problem” of the snowboarding problem to be the prob-
lem of finding the position of the snowboarder as a function of time if we
are given the shape of a halfpipe and the initial velocity and position of a
snowboarder on the bottom of the halfpipe. To do this, we take the function
φ : I → R2 (where I is some interval) to be a “sufficiently nice” function (in-
finitely differentiable, one-to-one, and with nonzero derivative) whose image
represents the shape of the halfpipe. To find the position of the snowboarder
on the ramp as a function of time, we essentially want to find some function
ψ : J → I such that φ◦ψ represents the position of a snowboard on the halfpipe.

A technique skilled snowboarders use to increase the height of their jump
on a halfpipe is known as “pumping”. To apply this technique, a snowboarder
crouches as they approach the halfpipe, and then stand up as the travel up the
halfpipe, thus changing their moment of inertia [3]. To model the snowboarder
pumping (or changing their height in any way), we will define a function h
to represent the height of the snowboarder. We define h to be a function of
the position of the snowboarder on the ramp, and we assume that a skilled
snowboarder could control their body to stand up while snowboarding in a
manner described by h. We define the problem below:

Given:

• A parametrization of the ramp, φ : I → R2,

• The initial velocity v0 of the snowboarder.

• The manner in which a snowboarder will stand up on the ramp. Namely
h : φ(I)→ R representing the distance from the snowboarders feet to their
center of mass. Note that h is a function of the snowboarders position on
the halfpipe.

To Find:

1. A function ψ : J → I such that a snowboarder following Newtonian
physics would traverse the ramp parametrization with position φ ◦ ψ(t).

1.2 Outline of Solution of the Forward Problem

Our general strategy for solving the forward problem is to fix a point with respect
to the track and compute a system of equations based on the conservation of
angular momentum about that point. We use this approach to derive a second
order ODE that approximately represents the position of a snowboarder on a
given ramp. We assume two initial conditions, namely the initial position and
velocity of the snowboarder, thus yielding a unique solution to the ODE. Our
two major simplifying assumptions are that

• we treat the snowboarder as a pointmass,

3



Page 4 of 11 Control #10499

• we ignore friction and air resistance.

We will not explicitly write out the ODE in its full glory, but will instead
sequentially derive a sequence of functions such that our ODE can be written
as a sequence of compositions of these functions with each other evaluated at
ψ(t), ψ′(t), and ψ′′(t). Recall that ψ represents the function we are trying to
solve for.

1.3 Derivation of the ODE

Suppose that at each point x ∈ φ(I), the snowboarder maintains their center of
mass at distance h(x) from their feet, perpendicular to the path of travel. If we
fix a point O ∈ R2, then with respect to O, we have by conservation of angular
momentum that

I(0)~ω(0) +
∑
i

∫ t

0

~τi dT = I(t)~ω(t),

where the sum is taken over all torques acting on the the snowboarder with
respect to O. Differentiating this with repsect to t, we get that∑

i

~τi(t) =
d

dt
(I(t)~ω(t)). (1)

We note that ~τ , I(t), and ~ω(t) can all be written as functions of (φ◦ψ), (h◦φ◦ψ)
and their derivatives of various orders.

Figure 1: Snowboarder with forces

To compute the torques acting on the snowboarder, we consider the two
most influential forces acting on the snowboarder, namely the normal force
from the ramp and gravity. Thus

Fnet = Fnormal + Fgravity.

Calculating the normal force directly is difficult, however, so we instead calculate
the centripetal force due to the curved motion of the path. This will comprise
the entire component of Fnet in the normal direction. Since the centripetal
force and the normal force are parallel, we know that the remaining force will
all be tangential, and hence will just be the component of the gravitational force
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that is tangent of the motion of the center of mass. Since we assume that the
snowboarder stays on the halfpipe until they reach the end of the halfpipe, we
can compute the sum of these forces in the normal direction to be v2/r where v2

is the velocity of the center of mass and r is the radius of the osculating circle to
the path of travel of the center of mass. On the other hand, the component of
the net force parallel to the direction of travel is just the component of Fgravity

which is parallel to the direction of travel. We compute these explicitly now
using a sequence of explicit defintions and computations.

Define Tφ to be unit vector in the direction of travel of the feet of the
snowboarder. We compute

Tφ(t) =
φ′(ψ(t))

|φ′(ψ(t))|
.

We let M denote the matrix

M
def
=

(
0 −1
1 0

)
,

i.e. rotation by π/2 counterclockwise. Thus the normal to the path of the feet
of the snowboarder is given by

Nφ(t) = M · Tφ(t).

We now define p(t) to be the position of the snowboarder’s center of mass at
time t. By our assumptions on how the snowboarder stands, we compute this
to be

p(t)
def
= φ(ψ(t)) + h(φ(ψ)) ·Nφ(ψ(t)).

The tangent to the path of the center of mass is thus

Tp(t) =
p′(t)

‖p′(t)‖
.

The normal to the direction of travel of the center of mass is

Np(t) = M · Tp(t).

The radius that we will need to compute the torques is simply the vector from
O to p(t), i.e.

R(t)
def
= p(t)−O.

The force due to gravity is just

Fgravity = m~g

where m is the mass of the snowboarder and all of their equipment. The norm
of centripetal force will be mv2/r where r is the radius of curvature of the
motion of the path of center of mass. If we compute r exactly, we will get
an expression that involves the third derivative of ψ, but our initial conditions
only give two conditions, so we need to make an approximation to make our
differential equation have a unique solution. We phrase the following result
below:
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1.4 Approximating the Radius of Curvature

We take a short diversion to present a result about approximating the radius of
curvature of p, as defined above.

Claim: Let ρφ(t) represent the radius of curvature of the curve φ(t) and
suppose |h(t)| << ρφ(t). Then the radius of curvature of the curve p(t) =
φ(t) + h(t)Nφ(t) is approximately (as a second order approximation) equal to

ρp(t) ≈ (ρφ(t)− h(t))− 1

2
(h′(t))2 ρφ(t)

|φ′(t)|2
. (2)

We omit the derivation of this approximation, but comment that it was derived
through approximation of φ and p by osculating circles and then approximation
of h as a power series. We also note that the above approximation is independent
of reparametrization so the above approximation holds for p as written above.

Figure 2: Case where h is constant

Remark: We note the interesting fact that the above approximation is actually
an equality if h is constant (and |h| < ρp).

We omit the proof of the above remark so as to prevent cluttering of ideas,
but we comment that it is a straightforward computation using standard for-
mulas for the radius of curvature of a planar curve.

1.5 Deriving the ODE, continued. . .

We continue with the derivation of the ODE. Using the notation from before,
the total force on the center of mass in the normal direction is

Fcent(t) = mv2/ρp(t)Np(t).

Using the approximation result stated above, we see that

Fcent(t) ≈ m
‖p′‖2

(ρφ − h) + 1
2 (h′)2 ρφ

|φ′|2
Np
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where for readability, we omit the point at which each function is being evaluated
in the above expression.

By definition, we have that

~τi = R× Fi.

Since R and Fi are all in the plane, we know that all of the R × Fi will be
perpendicular to the plane, i.e., be parallel to the vector R×MR. Using basic
properties of the cross product, dotting our torques with the the vector ((M ·
R)×R)/(R,R) gives us a scalar representing the torque, which after some simple
manipulations is just

τtotal = τgravity + τcent = (M ·R,Fgravity) + (M ·R,Fcent)

where (·, ·) notates the inner product in R3. Similarly, since I(t)ω(t) is a vector
in R3 which is perpendicular to the plane in which φ travels, its derivative
must be too. Hence we can take the dot product of I(t)ω(t) with the vector
(R ×M · R)/(R,R) to transform ~ω(t) into a scalar expression. By computing
we have that

ω = (~ω,R× (M ·R)/(R,R)) =
‖p′(t)‖2

‖R‖
.

Since we are treating the snowboarder as a pointmass, we have that

I(t) = m‖R(t)‖2

where m is the mass of the snowboarder. Combining the above results and
terminology with our original differential equation (1), we have that

(M ·R,Fgravity) + (M ·R,Fcent) =
d

dt
(I(t)ω(t)), (3)

with all of the terms as defined as above. We note that both sides can be written
as a function of ψ,ψ′, and ψ′′ and that our initial conditions specify both ψ(t0)
and ψ′(t0).

2 The Variational Problem

2.1 Introduction

The key idea of our approach is to use techniques from the calculus of variations
to find the curve φ that maximizes the angular impulse the snowboarder exerts
on the system. The calculus of variations was first systematized by Euler and
Lagrange, who tackled the problem of finding the curve of fastest descent under
gravity. In particular, they found necessary conditions for the functional

F (y) =

∫ b

a

f(x, y(x), y′(x)) dx

to have a local extremum on a subset of {y ∈ C1[a, b] : y(a) = a1, y(b) = b1}.
Our particular problem requires a considerable generalization of their tech-
niques, which we will outline briefly as we state the relevant equations.
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2.2 Problem Statement

We now give a precise statment of the variational problem we are trying to
solve. To maximize the height the snowboarder can attain above the end of
the halfpipe, we want to maximize his or her linear velocity at this end. Based
on our choice of O, this becomes equivalent to maximizing the angular velocity
ω(t) about O at this endpoint. Let τ(t) = (M · R,Fgravity + Fcent)(t) be the
(signed) magnitude of the torque exerted about point O at time t. Then recall
that by the conservation of angular momentum,∫ tfinal

0

τ(s) ds = I(tfinal)ω(tfinal)− I(0)ω(0).

Since we assume that the snowboarder is standing at full height when they reach
the top of the ramp, as is common among skilled snowboarders, the quanities
I(0), ω(0) and I(tfinal) are constant, and we want maximize ω(t) when we max-
imize the integral of the torque. Our objective, then, is to find the sufficiently
smooth plane curve α(t) = (φ◦ψ)(t) : [0, tα]→ R2 that maximizes the functional

J [α] =

∫ tα

0

τ(α(s), α′(s), α′′(s)) ds

subject to physical constraints p(0) = 0, p′(0) = v0 and the requirements that
α(t) be at a fixed predetermined height H above the base of the ramp and have
a vertical tangent at this point. Here we have written out explicitly the depen-
dency of τ on the various derivatives of α that we derived in the formulation
of the forward problem, but incidentally not on s itself. This type of problem
is a generalization of the kind Euler and Lagrange initially studied in several
regards. Namely, we are solving for an optimal vector-valued instead of scalar-
valued function, the integrand depends on higher order derivatives, and the end
limit of integration is variable.

2.3 The Euler-Lagrange Equations

Here we present the system of differential equations that α must necessarily
satisfy in order to be a solution to the variational problem. These conditions
are analogous to the requirement that for a smooth function to have a local
extremum at a point, its derivative must be zero. By an obvious generalization
of an argument in [1], we can show that α(t) = (αx, αy) must satisfy the Euler-
Lagrange equations

ταx −
d

dt
τα′

x
+
d2

dt2
τα′′

x
= 0 (4)

ταy −
d

dt
τα′

y
+
d2

dt2
τα′′

y
= 0. (5)

The proof involves assuming that α is a solution, and considering variations of
the form α+ ε ·ν where ν is an arbitrary perturbation function whose value and
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derivatives at 0 and tα are zero. For α to be a local solution, we must have that

δJ = ε
d

dε
J [α+ εν]

∣∣∣∣
ε=0

= 0

for all such ν. Repeated integration by parts of δJ gives the desired result.
Now we handle the “problem” that the the end limit of integration depends

on α. Recall that we fix the final height of α at H, so we must have

α(tα) = (px(tα) + h(α(tα)), H).

Since p depends only on α and its first derivative, we can express this condition
as

β(α(t), α′(t))|t=tα = α(tα)− (px(tα) + h(α(tα)), H) = 0.

Or in other words, α and α′ lie on the zero level set of the plane curve β. From
this boundary condition, we can derive a set of equations that form what is
known as a transversal condition. By generalizing the Lagrange multiplier
approach in [2] to integrands depending on higher derivatives, we obtain an
additional set of equations that α must satisfy at t = tα:(

− d

dt
τα′′ + τα′

)
· dα + τα′′ · dα′

∣∣∣∣
t=tα

= 0 (6)

for all

(
dα
dα′

)
∈ ker(Bα Bα′)

where Tα′ is an abbreviation for the vector (Tαx Tαy )T , etc. Note that if we
assume (Bα Bα′) has full rank, then by linearity, we only need to check two
linearly independent values of (dα d′α)T .

As a consequence of this analysis, we start our search for the optimal α by
solving the system of equations consisting of (4), (5) and (6), along with their
approriate boundary values.

2.4 Approximating the Euler-Lagrange Equations

Given the extremely involved derivation we underwent to produce τ , one rea-
sonably expects that the Euler-Lagrange equations (4), (5) are too complicated
to solve even numerically. Our initial experiments solving these equations in
Mathematica confirmed these expectations. To have any hope of producing an
approximate solution α, we decided to use a Taylor series to approximate the
torque as a function of α and its derivatives. That is, we can write τ as a
function of six scalar variables

τ(x1, x2, . . . , x6) = τ(αx, αy, α
′
x, α

′
y, α

′′
x, α

′′
y)

and approximate it with a Taylor polynomial

τ(x1, x2, . . . , x6) ≈
n∑

|γ|=0

1

γ!

∂γτ(~a)

∂~xγ
(~x− ~a)γ .
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Due to the computational intensity of even this approximation, we decided to
take n = 2. With this approximation in hand, we were able to substitute α and
its derivatives back into τ . This greatly improved our ability to take derivatives
with respect to t as mandated by the Euler-Lagrange equations. By explicitly
computing the derivates of τ(x1, x2, x3, x4, x5, x6), we computed for our fixed
parameters that the Taylor approximation to τ up to second order was

τ(x1, x2, x3, x4, x5, x6)

≈ −.686x1 + 1.426x4

+1.005x2x6 + .62292x4x5 + 21.716x1x6 + .290x2x4 + .0025x2
6

3 Results

We used Mathematica to numerically solve the approximate Euler-Lagrange
equations under several simplifying assumptions. First, we fixed the height
function as

h(α(t)) = 1 +
2 arctan(5(αy(t)− 5))

π

which we determined to be empirically reasonable by studying the behavior of
skilled snowboarders on film. We also fixed the end time tα at a value slightly
smaller than the time it would take a snowboarder to reach the top of a halfpipe
without pumping. This was because the presence of this additional tα variable
prevented Mathematica from solving through the transversal conditions (6).

Below is a figure of containing the parametrization of the approximate so-
lution:

0.005 0.010 0.015 0.020 0.025

0.002

0.004

0.006

0.008

0.010

Figure 3: A reproduction of an approximation to an optimal snowboard ramp

As one can easily see, the figure is not perfect, but with more computing
power and more sophisticated algorithms in computing the solutions of ODEs,
one could expect a picture resembling a more typical snowboard ramp.
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