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Abstract

The current record for maximum vertical air achieved by a snow-
boarder on a half pipe is 24 feet and 11 inches. We wish to construct
such ramps where vertical air is maximized, but the ramp remains exe-
cutable by a strong snowboarder. We judge the difficulty of ramps by the
maximum normal force exerted on the athlete. Limiting that force, allows
us to pick executable ramps. We model the snowboarder’s trajectory by
the his/her center of mass and present two separate models accounting
for friction.
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1 Introduction

In the halfpipe, snowboarders seek to perform a number of moves. To optimize
vertical air we suggest a quarter pipe were incoming velocity and therefore the
resulting jump can be higher. Our model seeks the optimal curve to the side
of such a snowboard course. Specifically, we analyze the influences of different
forces on the center of mass of the boarder during their ride and optimize the
curve to maximize their vertical air. First, we model the optimal parameters
assuming no friction. Next, we introduce two methods of approximating the
influences of friction; one by linearization of the differential equations, the other
by numerical integration. We then determine the optimal ellipitic path for the
boarder’s center of mass, and relate that back to the optimal jump.

2 Existing Methods

FIS Standard Halfpipes

There are two standard FIS halfpipes, each of which is elliptical in shape [3].

1. “22ft” Halfpipe The crown to crown width, which approximates the
major axis, is 19.5 meters. The floor to crow height, which approximates
the semi-minor axis is 6.5m (22ft). The slope down the half pipe is between
16◦ and 17◦.

2. “18ft” Halfpipe The crown to crown width is 18m meters. The floor
to crown height is 5.4m (18ft). The slope down the half pipe is between
17.5◦ and 18.5◦.

The angle at the edges of the pipe are recommended to be between 83◦ and 88◦

The current world record for vertical air off of a half pipe, held by a skiier, is
approximately 25ft. Based upon our model including friction (), we interpolated
backwards and estimated that the skier had a velocity of approximately 16.8
m/s, which we will use to compare our model with the current model.

3 Assumptions

1. Air resistance is negligible. Although strong winds would have a pro-
found influence on the trajectory of a snowboarder, we assume that no
wind is present, and that air resistance is negligible by comparison to
other frictional forces.

2. Two dimensional solution is similar to three dimensional solution
We model the trajectory of the snowboarder in only two dimensions. We
assume that an optimal three dimensional surface can be produced by
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taking the optimal two dimensional path, and stretching it along the new
dimension based upon that component of the velocity.

3. Modeling the center of mass, models the snowboarder. Our model
optimizes the path of the center of mass of the snowboarder, which we
relate back to the actual shape of the jump.

4. Moment of Inertia is constant. We also assume that the snowboarder’s
moment of inertia is constant, he approaches the jump standing, and takes
off standing.

5. Elite snowboarders are skilled. Our model relies on the ability of the
snowboarder to keep proper balance despite the curvature of the jump
and that snowboarders’ legs can support 4 times their body weight for the
length of the jump. (This factor is reasonable based upon Harding [1],
but could be easily changed in our model.)

6. Elite snowboarders are well prepared. We use a low snowboard-
snow frictionaly coefficient (µ = .02), based upon the assumption that
elite snowboarders wax their boards well, and that the halfpipes are well
maintained [2].

4 Definitions and Basic Derivations

The following forces act on the snowboarder

• mg: Gravitational Force

• Fn: Normal Force

• Ff : Frictional Force

Based upon our assumptions, the normal force, Fn, is constrained by:

Fn ≤ 4.5mg

At each point (x(θ), y(θ)) we have centripetal acceleration in the normal
direction Ac where

Ac = v2κ (1)

Therefore, adding the normal component of gravitational pull and the normal
force we get

mAc = Fn −mgcos(θ) (2)

Ignoring variations in the snowboarder’s moment of inertia, we calculate the
Fn by combining the previous expressions, and noting that θ = arctan ( dydx ) and

that κ =
d2y

dx2

(( dy
dx )2+1)3/2

:

4



Control number: #10756 5

Fn = mv2κ+mgcos(θ)

= mv2
d2y
dx2

(( dydx )2 + 1)3/2
+

mg√
( dydx )2 + 1

4.1 Goal

The goal of our model is to find the curve that maximizes the vertical air of the
snowboarder, given an initial velocity, frictional coefficient and the reactions of
the boarder.

We simplify our model from an entire halfpipe to a quarter pipe, and from
three dimensions to two. Although each jump depends on the exit velocity of
the previous, each jump is isolated from the previous in every other sense. Thus
modeling a quarter pipe is very similar to modeling the halfpipe.

In order to maximize the vertical air, we would like to find the point such
that the vertical velocity of a snowboarder traveling along the curve is maximal.
However, this is unrealistic. As the snowboarder travels along the curve, he or
she will experience a great normal force.

5 Considerations for Curves

Based upon the discussion above:

1. Slope We want a high final slope, to maximize the snowboarder’s vertical
velocity.

2. Final Height We want to minimize the final height.

3. Curvature We want a curve that increases in slope quickly, without ex-
erting to great a normal force.

With these considerations in mind, we need to find the types of curves
that we can apply standard optimization techniques to.

The curve should reach a steep slope with minimal height, which implies
that we would like as high of curvature as possible.

Given that the boarder travels fastest at the bottom, we would like an
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increasing curvature, and thus increasing centripetal acceleration, in or-
der to keep the normal force as close to the maximum as possible.

Increasing curvature limits the space of possible solutions significantly.
Many common functions, such as monomials, and exponentials, have de-
creasing curvature, and are thus out of the question. The circle has con-
stant curvature, which makes it much less appealing than it’s cousin, the
ellipse.

5.1 Mathematical formulation

For this model, we will initially assume that there is no friction present in the
course. Let (0, 0) be the starting position with initial velocity v0 and suppose
we want the snowboarder to exit the half pipe at the position (xf , yf ), x, y > 0.

Definition Let Cxf ,yf denote the circle passing through (0, 0), (−xf , yf ), (xf , yf ).
Note that such a circle is unique.

The curve the snowboarder will be traveling up will be a section
of the lower right quarter of the circle Cxf ,yf . This curve can explicitly
be written as

hxf ,yf (x) =
x2f + y2f

2yf
−

√√√√(x2f + y2f
2yf

)2

− x2 (3)

5.2 Results

6 Model with Friction (Linearization Method)

In this model, the snowboarder will be traveling up the curve hxf ,yf described
in the frictionless model, but this time with the effect of friction added. Let µ
be the coefficient of friction. Let Ff (x) be the force of friction at position x,
0 ≤ x ≤ xf . Our model for the force of friction is that

Ff (x) = µFn(x)

Then as worked out in detail in (), the velocity v satisfies the initial value
problem

v′ = µvφ′ − g
tanφ+ µ

v
v(0) = v0
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Figure 1: A sample curve hxf ,yf for xf = 8.99, yf = 6.835, θf = 88.3 degrees

Figure 2: caption

Observe that the above ordinary differential equation is nonlinear. In order to
get our results, we will linearize this equation to solve for v. Let ṽ(xf ) be the
velocity at xf we get from solving the linearized equation. Then the normal
force is

F̃n(x) = ṽ(x)2κ(hxf ,yf ) + g
1√

h′xf ,yf
(xf )2 + 1

Then our goal becomes

Maximize the function v̄(xf , yf ) = ṽ(xf )
h′xf ,yf

(xf )√
h′xf ,yf

(xf )2 + 1
subject to

the contraints v20 − 2gyf ≥ 0 and max0≤x≤xf
F̃N (x) ≤ Nmax
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Figure 3: caption

6.1 Results

6.2 ‘Optimal’ Curve Without Friction

Fixing Fn equal to it’s bound leads to the following differential equation, which
can be derived from the equation for the normal force:

Nmax =
√
v20 − 2gyf ∗

h′′(x)

(h′(x)2 + 1)3/2
+

g

(h′(x)2 + 1)1/2

h(x) is optimal in the sense that it will have the minimum final height and
maximum curvature for any desired end slope, based upon our limited model.
For example, this model ignores friction entirely, which leads to the following
model.

7 Model with Friction Iterative Method

7.1 Description

This model accounts for energy lost due to friction, by using numerical approx-
imations for friction along points of the curve.

Our goal is to calculate the ending velocity by considering the total non
conservative energy lost in the ride up the slope.

7.2 Mathematical Formulation

The snowboarder is treated as a particle of mass m traveling along the curve
(x(θ), y(θ)) for θs < θ < θf . At each point we have

Fn(θ) = m ∗ v2(θ) ∗ κ(θ) +mg ∗ cos(φ(θ))

Ff (θ) = µFn

where

κ(θ) =
x′y′′ − y′x′′

(x′2 + y′2)
3/2

φ(θ) = arctan

(
y′(θ)

x′(θ)

)
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Taking a partition [θs, θ1, . . . , θf ] we can calculate v(θn) by considering the
non conservative energy Wnc lost in the interval [θn−1, θn]. The only non con-
servative force we consider here is friction.

Wnc =

∫ θn

θn−1

Ff (θ) ds(θ)

For small enough θn−1 − θn, we can approximate Ff (θ) for θn−1 ≤ θ ≤ θn
by Ff (θn−1). We get

Wnc ≈ Ff (θn−1)

∫ θn

θn−1

ds(θ)

Wnc ≈ Ff (θn−1)
√

(y(θn−1) − y(θn))2 + (x(θn−1) − x(θn))2

We can now calculate v(θn) by the work-energy theorem

1

2
mv2(θn) =

1

2
mv2(θn−1) +mg ∗ y(θn−1) −mg ∗ y(θn) −Wnc

Therefore given v(θs), we can calculate Ff (θs), v(θs+1) and so on up to v(θf )

7.3 Data

We considered ellipses x = acos(θ), y = bcos(θ) for −π
2 ≤ θ ≤ 0.

The estimations bellow are taken from running the algorithm presented
above dividing the interval for θ into 200 equal sections. When selected cal-
culations were run with 10000 sub-sections the results remained the same to 3
significant figures.

In our analysis we varied the initial velocity at the base of the quarter pipe, as
well as the shape of the ellipse. For each three-tuple of conditions we calculated
the vertical air the boarder would achieve as well as the max normal force they
experienced at any sampled point. The consideration of the max normal
force on the boarder allowed us to rule out designs, even if they would
theoretically lead to higher vertical air.

Effects of changing the frictional coefficient were also examined. However the
data is not presented. Although the friction did somewhat change the vertical
air achieved, it had significantly less effect than initial velocity on the max
normal force experienced, and therefore on the reasonableness of the design.

Instead we present data to support two very key points:

1. Increasing initial speed, although resulting in higher vertical air, comes at
a very large cost of increased normal force on the athlete.

2. More precise data about boarder ability to withstand normal force is nec-
essary. There is a very large variation between curves in how much normal
force they will exert. Therefore a better estimate on the upper bound of
human strength will allow us to design a resaonable quarter pipe to max-
imize vertical air.
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Consider the tables bellow for the max normal force and vertical air achieved
for selected ellipses with an initial velocity of 16.8m/s. The cells are color coded
to represent the strength of maximum normal force. Given a range of max
normal forces our recommendation for a quarter pipe design is bolded.

g.png

g.png

If the human can only support less than 3mg of normal force, the best
quarter pipe design would be an ellipse with a = 12, b = 9. The boarder would
then achieve about 4.52meters of vertical air.

However if the human strength does allow for 5mg of normal force, then the
best pipe design would be a = 8, b = 6. On this design, vertical air achieved
would be much higher at 7.51meters

Data for initial velocities of 15m/s and 20m/s is included in the appendix,
and similar conclusions can be drawn.
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7.4 Model improvements

Previously, we were considering the full quarter ellipse with −π2 ≤ θ ≤ 0. How-
ever the ramp exit need not necessarily be vertical.

We have been modeling boarders as their center of mass, but as they leave
the ramp, boarders are upright, and coming down they bend in their knees. This
is about a 1

2meter difference in the center of mass. Which means their center of
mass is allowed that much horizontal travel, while still letting the boarder land
back on the ramp.

Therefore, we modified our code to find the best point to truncate the ramp
that allows for a proper landing. The data for a sample ellipse is bellow

8 Results of Model 2

9 Other Considerations and Limitations

9.1 Moment of Inertia

In our model we assumed that the moment of inertia of the boarder was constant,
and that the boarder did not change his own center of mass. These assumptions
entirely ignore two influential factors in the snowboarder’s jump.

9.1.1 Pumping

Pumping is a way for snowboarders to increase the velocity of their center of
mass by decreasing their moment of inertia while in a curve. The velocity
increase comes from conservation of angular momentum. If the boarder enters
the curve crouched, and stands up as he reaches the top, he will increase his
speed, and thus his vertical air.

9.1.2 Popping Off

At the top of the curve, the snowboarder can suddenly push off, which helps
cancel out any horizontal velocity that he still has. As such, the jump can be
made shorter, and less steep at the top, thus increasing vertical air.
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9.2 Movement in Air

Although vertical height is important, it is not the overall end goal of a snow-
boarder. Tricks, such as grabs, spins, and flips are what snowboarders strive
for. In order to model such tricks, a three dimensional model would have been
necessary.
Also, vertical height is just a proxy for something more important, average air
time. Average air time is what allows snowboarders to perform more difficult
tricks in the air, and it is strongly correlated with success in competitions.

10 Conclusions

We conclude that the standard snowboard halfpipe leaves something to be de-
sired when seeking vertical air.

Consider the table bellow summarizing our three models for the initial veloc-
ity of 16.8m/s. In all cases the vertical air is greater than 24 feet 11 inches. We

find that the initial velocity has a profound influence on the normal forces that
the snowboarder experiences in the jump, and that in order to achieve more
vertical air, an ellipse with less curvature should be chosen.
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11 Appendix
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