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Abstract

In this paper, we present a computerized model to predict future crime
locations and probable residences for a serial criminal based on the loca-
tions and times of a sequence of past crimes. We first create a “road
metric” in order to measure distances by automobile travel time. In order
to predict future crime locations, we apply the nonparametric statistical
technique of kernel density estimation with our road metric, which allows
us to estimate a time dependent probability distribution function. In or-
der to predict the residences of serial criminals, we use a refinement of a
model developed by Rossmo, again adapting it to the road metric. This
method develops a probability distribution for where a criminal might
live by balancing the convenience of previous attack locations with the
observation that greater distances from home afford more opportunities
for crime and a lesser chance of being caught. We apply our model to
several high profile serial murder cases, namely the case of Peter Sutcliffe,
the “Yorkshire Ripper” and that of Wayne Williams, the “Atlanta Child
Murderer.” In both cases, our model was successful in predicting the
region of the criminal, and might prove useful in a criminal investigation.
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1 Introduction

In this paper we present a computerized model for studying serial crime patterns.
Our model takes highway systems into account as a significant determiner of
how criminals behave. Specifically, we created a road metric to give a measure
of the time it takes for a driver to travel between two points on a map. We
incorporate this road metric into several different models to give an estimate
of where future crimes may occur and where the perpetrator may live. Our
models give law enforcement agencies an estimate as to where they could patrol
with the highest likelihood of apprehending the criminal, as well as where they
should conduct their investigation into the residence of the criminal.

1.1 Outline of Our Approach

The beginning of our paper will be devoted to presenting the theoretical frame-
work and an outline of our computer implementation. The later sections of our
paper will be devoted to applying our model to famous notable criminal cases
and assessing the accuracy of the model. For each criminal investigation we will
do roughly the following:

• Develop the “road metric” to measure distances based on how long it
takes to drive between them. This metric will be based primarily on the
local highway system.

• Estimate and extrapolate probability density functions for where
criminals are likely to commit future crimes.

• Estimate offender’s residence using a best fit circle under the road
metric and by applying a modification of current models.

1.2 Assumptions

Due to the huge variation in criminal activity, as well as the highly unusually
and unpredictable psychological pathologies that high profile serial killers often
have, using a relatively simple computer model to predict serial crime in general
faces several hurdles. Below are the assumptions we take about the crimes that
our model is applied to:

• Crimes are committed by individuals. We assume the series of crimes
has been attribute with a high degree of certainty to a single individual.
We did not design our model to analyze organized crime, gang, or mob
activity.

• Criminals travel mostly by automobile. Our model makes significant
use of analyzing highway patterns to judge distances based on how long
it takes to travel them by automobile.
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• Crimes are committed near to at where they are discovered by
police In terms of murder cases, this means that body dump sites are
murder sites. This is not an unreasonable assumption, as disorganized
serial killers often leave their victims near the murder site [9]. Note
that in serial crimes such as serial rape, burglary, or arson, there is no
distinction between the site of the crime and the site found by police.

• Crimes are occurring within a small region, i.e. roughly within a
city or county. This eliminates the case that crimes are occurring across
multiples states or countries. In those cases, our model should be applied
to each cluster of crimes.

2 Mapping Crime and the Road Metric

We used the mathematical software Sage to create a map of the area surrounding
serial criminal incidents. The main features we included in the maps are the
major highways, as well as the locations of criminal activities. We treat the
highway system as a graph, considering each highway entrance and exit as a
vertex in the graph, and each road section in between a pair of entrances and
exits as an edge of the graph. Each edge is given a weight corresponding to to
the Euclidean length between its corresponding vertices.

2.1 Road Metric

For each map M , we computed a road metric d : M ×M → R+. The road
metric measures distances within a region based on the approximate
total travel time by car. The metric makes the assumption that drivers will
usually take the shortest path between two points, utilizing highways as much
as possible instead of traveling entirely via side-streets. The metric makes the
assumptions that

• Time spent on side streets is proportional to the Manhattan
metric since side streets are often organized into a grid shape,

• Time spent on the freeway is proportional to the Euclidean dis-
tance.

Given points a and b on the map, we compute the road metric as follows:

1. For each vertex v in our highway system (which correspond to entrances
or exits on the freeway), we compute the Manhattan distances M(v,a)
and M(v,b).

2. For each pair of vertices v1,v2, we apply Dijkstra’s algorithm to find the
shortest path (taking into consideration the lengths of the edge segments)
on the graph of our highway system from v1 to v2. We call this distance
E(v1,v2).
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3. Then our road metric is defined as

d(a,b) = min
{

min
v1,v2
{M(a,v1) + E(v1,v2) +M(v2,b)}, M(a,b)

}
,

or in other words, the minimum of the fastest way to take the highway,
and taking a route which avoids the highway.

In terms of actually computing the road metric, we divided the maps into
m × n grids and computed and then stored the distance from each grid space
to each other grid space.

3 Estimating and Extrapolating a Probability
Density Function

3.1 Kernel Density Estimation

Given the locations and positions of criminal incident, we created a first estimate
for the probability density distribution for future crimes as follows. In the case
of a Euclidean distances, given a set of sample points {x1, . . . ,xn} generated by
a random variable, one often estimates the probability density function as

φ(x) =
1
N

N∑
i=1

KA(x− xi)

where
KA(x− xi) =

1
2π|A|1/2

e−((x−xi)
tA−1(x−xi))

where A is a covariance matrix, which amounts to adding small normal distri-
butions around each point to generate an estimated probability density function
[7], [10],[2]. We observe that since covariance matrices are positive definite, the
quadratic form xtAx induces a norm on Rn defined by

‖x‖ =
√

xtAx,

which in turn induces a metric. This naturally presents an application of our
road metric by replacing the Gaussian function K (shown above) with the mod-
ified Gaussian function, G, defined by

G(x,xi, t) =
1

Mi(t)
Exp

(
− d(x,xi)2

(h(t− ti))2

)
,

where d is the road metric defined above, and h is essentially an indirect control
the covariance of this kernel and Mi is the normalizing constant defined by

Mi(t) =
∫

Exp
(
− d(x,xi)2

(h(t− ti))2

)
dx.

5



Page 6 of 19 Control #7273

We treat h as a function of time since it is reasonable to assume that more
recent crimes are more useful in predicting future crimes than earlier crimes
and hence it is reasonable to let the modified Gaussian functions “diffuse” over
time by letting h be an increasing function. We empirically determined that
setting h(t) = 2.5 arctan(2t+ .2), where t is measured in weeks, was a good fit.
Our estimate for the probability density function thus becomes

φ(x, t) =
1
N

N∑
i=1

G(x,xi, t). (1)

In terms of actually computing φ(x, t), as we did with the road metric,
we computing φ for each grid space in our partitioned m × n grid using the
precomputed values of our road metric.

3.2 Extrapolating Future Probability Density Functions

Our above discussion gives a reasonable idea of where crimes have been commit-
ted, but it is not necessarily reasonable to expect that a criminal will distribute
his or her crimes based on a single probability distribution function for all time.
Therefore we decided to perform a weighted least squares approximation based
on trends in the probability distribution functions discussed above. The idea is
to make a linear approximation to the probability density functions and predict
a future probability density function outside of our data set. Our method is
as follows. Suppose x1, . . . ,xn represent the location of crimes which occurred
respectively at t1 < t2 < · · · < tn, and that we want a probability density
function at some time t∗ > tn.

• In our equation for φ(x, t) (Equation 1), we sum over only the crimes
which have occurred before time t.

• So that our linear approximation is not biased by the initial spikes from the
kernels functions resulting from individual murders initially being point
masses, we wish to let our density functions “diffuse” as much as possible.
Using the probability density estimation in Equation 1, we compute the
probability density functions

φ(x, t2 − ε), φ(x, t3 − ε), . . . , φ(x, tn − ε)

for some small ε as well as
φ(x, tM )

for some tM between tn and t∗.

• We now do a weighted least squares approximation to estimate φ(x, t∗).
To do this, we consider φ(x, t) pointwise over our m × n map grid and
perform a weighted least squares. We modify the well known normal
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equations for a standard least squares problem XtXβ̂ = Xty as described
in [1] to get the modified normal equations

XtWXβ̂ = XtWy

where W is a weight matrix. We chose to weight the the probability
density functions φ(x, tn) linearly in time (so that later crimes are weighted
much more than earlier crimes).

4 Best Fit Circle and Rossmo’s Model

4.1 Centrography

One common method for estimating the residence of a serial criminal is to treat
the location of each crime as a point mass and find the centroid of the point
masses by means of a spacial average. According to [9], centrography is one of
the most common search methods for criminal investigations and has been used
to examine serial rape cases in San Diego, as well as the case of the Yorkshire
Ripper. According to [4], there is a significant amount of evidence showing that
serial rapists often live close to the centroid of their offense locations.

4.2 Best Fit Circle

A reasonable extension of the idea of using a centroid to estimate the location
of a criminals residence is to attempt to fit a circle to the location of criminal
activities. This is based on the assumption that criminals will typically try to
avoid committing crimes very near to where they live, but at the same time
will expend roughly the same amount of effort in each of their crimes. Since we
would expect the energy put into a crime by a criminal would be comparable
to the total amount of time they spend traveling, we thought to apply the road
metric we discussed earlier.

4.2.1 A First Attempt

The most naive thing we could do is fit a circle to the data by minimizing the
square of the distance from our crime locations to a circle, i.e. minimize∑

i

(d(Cr(x),y))2 =
∑

i

|d(x,y)− r|2,

where the sum is taken over all of crime locations xi. Unfortunately this method
is very unstable. Consider the example in Figure 1 of the best fit circle for three
points. Moving the middle point slightly produces a tremendous change in the
best fit circle’s radius and center.
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Figure 1: The unstable behavior of a naive best fit circle.

4.2.2 A More Refined Best Fit Circle

A better generalization would be to notice that in Euclidean coordinates, given
a set of points x1, . . .xn, then the point x such that

n∑
i=1

‖x− xn‖2

is minimized is the centroid of the region.
This provides a natural generalization to the road metric which is perhaps a

better extension of the often used method of centrography. Namely, we define
the center of our best fit circle to be the point x such that

n∑
i=1

(d(x,xi))2

is minimized. We will define the radius, r, to be the average distance from x to
the crime locations, namely

r =
1
n

n∑
i=1

(d(x,xi)).

In Figure 2, we show an example of a circle in the road metric induced by
a highway system. The particular highway system is from the Sutcliffe murder
case which is discussed in further detail later in the paper.

4.3 Application to Rossmo’s Model

In [9], Rossmo presents the model for estimating the the residence of a criminal
based on the location of their offenses. The model makes use of the idea of a
buffer zone. The buffer zone is an area surrounding a criminals residence in
which a criminal avoids committing crimes. The idea behind the buffer zone
is that criminals will attempt to balance the energy they need to expend in
order to go long distances away from their residence to commit crimes, and
the increased risk of committing crimes near to where they live. There is a
significant amount of research supporting Rossmo’s model, as well as the idea

8
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Figure 2: A circle in the road metric induced by the graph for the Manchester
Leeds area of England. The highway system graph is black and the circle is
grey.

of a buffer zone, both in terms of criminal patterns as well as animal hunting
patterns [5],[8].

Rossmo’s model is based on subdividing a map of the general location of the
crimes into a grid and then computing the estimated probability of a perpetrator
residing in a particular grid space as

pjk = K

N∑
i=1

(
φ

‖xjk − xi‖f
+

(1− φ)Bg−f

(2B − ‖xjk − xi‖)g

)
where

φ =

{
1 if ‖xjk − xi‖ < B

0 if ‖xjk − xi‖ ≥ B,

and f, g are constants, B is the radius of the buffer zone, and K is some con-
stant used to normalize the entire probability distribution. Empirically, Rossmo
found that for criminal cases the optimal values for f and g were f = g = 1.2.
In our model we adapted the formulation of Rossmo’s model to use the road
metric. Thus the formulation of Rossmo’s model that we used in our simulations
becomes

pjk = K

N∑
i=1

(
φ

|d(xjk,xi)|1.2
+

(1− φ)
|2B − d(xjk,xi)|1.2

)
.

In order to estimate the radius of the buffer zone, we used our best fit circle in
order to approximate the radius of a best fit circle under our metric, and then
used half of this distance as the estimated radius of the buffer zone.

9
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5 Case Studies

In this section we apply the models discussed earlier to two notable cases, namely
the Yorkshire Ripper (Peter Sutcliffe) and the Atlanta Child Murderer (Wayne
Williams).

5.1 Yorkshire Ripper

The Yorkshire Ripper murders were a series of murders which occurred between
1975 and 1981 in which 13 women were murdered and 7 attacked in the Manch-
ester and Leeds area of England. Most of the women killed were prostitutes.
Peter Sutcliffe was convicted of the murders and attacks. According to [3], the
bodies did not appear to have been moved after the murders. We treated attacks
and murders identically in our analysis.

5.1.1 Map and Metric

Using a map of the Manchester and Leeds area, we represented the highways as
a graph, making sure to concentrate the exits and entrances (the nodes of the
graph) around population centers. Figure 3 shows a color plot of the distance
under the road metric from what was later determined to be Sutcliffe’s residence.

Figure 3: This shows the distance from Sutcliffe’s house under the road metric
with an overlay of our graph representation of the nearby highway system.
Sutcliffe’s house is at the house symbol. Red corresponds to a very short distance
and dark blue corresponds to a long distance.

10
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5.1.2 Probability Density Estimate

There were a total of 20 criminal incidents committed by Sutcliffe. We ran our
density distribution model on the first 19 cases in order to predict the location
of the 20th. We used the locations of the first 19 attacks and the time of the
20th in order to predict the location of the 20th. If one were to use our model
in real life, the time of the next crime would not actually be known, but this is
not of great importance since our choice of the variance function in our kernel
causes the model to stabilize very quickly. The results are shown in Figure 4.

Figure 4: This shows the estimated probability distribution for the 20th attack
knowing the first 19. The dots represent the attacks and the ‘x’ denotes the
actual location of the 20th attack. Red indicates the highest probability and
purple the lowest.

5.1.3 Rossmo’s Model

As discussed earlier, Rossmo’s model is designed to predict the location of the
offender’s residence. We modified Rossmo’s model to make use of our road
metric. As was discussed earlier, we first computed a best fit circle for the
crimes using a generalized centroid, which is shown in Figure 5. We then used
half of this value in the equation for Rossmo’s model to estimate the location of
the residence of the murderer. A colorized plot is shown in Figure 6 and a plot
of the estimated function as a surface is shown in Figure 7.

5.1.4 Assessment of Results

Our kernel method produced a strong hotspot around where the 20th murder
actually took place. From our extrapolated probability distribution, the 20th
attack was 8.58 times more likely to occur in the cell containing the actual
murder site than it was to occur in an average square. More importantly, the

11
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Figure 5: The best fit circle of the attack locations under the road metric. The
circle is shown in black, the graph is shown in grey, and the kill locations are
shown in red.

Figure 6: The probability density estimated by Rossmo’s model for the perpe-
trator’s residence. Red indicates the highest probability. The actual location of
Sutcliffe’s house is shown with the house symbol.

result of our model would direct law enforcement officers to begin their search
in precisely the square where the murder occurred.

Although Rossmo’s model did not generate a hotspot directly on Sutcliffe’s
residence, it still provided a good starting point for a police investigation. Sut-
cliffe’s house was on a second or third priority band and would be located
reasonably quickly in a search effort.

12
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Figure 7: Rossmo’s probability estimate as a surface.

5.2 Atlanta Child Murders

The Atlanta child murders refers to the murders of 29 boys and men between
1979 and 1981. Only 22 of these murders were conclusively linked to Wayne
Williams, so we will use only these data points in our models. There is evidence
that the bodies were found not far from where they were murdered [6]. Williams
was tried and convicted of two of the murders in 1982.

5.2.1 Metric and Map

We used a map in [6] of the highway system surrounding the murder locations.
As described earlier in the paper, we implement this as a graph and compute
the road metric for this case. The distance from Williams’ house is shown in
Figure 8.

5.2.2 Probability Density Estimate

We ran our model using the kernel probability function on 21 of the data points
in order to predict the location of the 22nd murder. The results are shown in
figure 9.

5.2.3 Application to Rossmo’s Method

Following the description of our model above, we first computed the best fit
circle for the kills in the Atlanta data set. This is shown in Figure 10.

13
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Figure 8: The distance from Wayne Williams’ residence under the road metric.

Figure 9: This shows our computed probability distribution for the 22nd attack
knowing the first 21. The actual location of the 22nd attack is shown as an ‘x’.

We then applied a modification of Rossmo’s method to estimate a probability
distribution of where the criminal lives. A colorized illustration of the results
are shown in Figure 11 and a representation of the results as a surface is shown
in Figure 12.

5.2.4 Assessment of Results

Our application of the kernel method for this case was not as successful as it was
for the Sutcliffe case. It happened that the 22nd murder was in an unexpected
position relative to the prior kills. The model was still able to predict a very
nontrivial probability for the 22nd murder being in this region, and the hotspot

14
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Figure 10: The best fit circle for the Atlanta child murders data.

Figure 11: A colorized representation of the prediction made by Rossmo’s model
for the location of the criminal’s residence with the locations of the crimes
overlaid. Wayne Williams’ residence is represented by the house symbol.

it generated is reasonably near this section. Surprisingly, the hotspot happens
to be centered over Williams’ residence.

Rossmo’s model was also able to create a hotspot very near the murderer’s
residence. Given the result of the model as guidance, law-enforcement could
very easily locate Williams.

15
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Figure 12: Rossmo’s probability estimate as a surface.

6 Improving the Model

6.1 Expanding the Road Metric

One of the most novel aspects of our approach was the design of the road metric
to accurately estimate the cost of travel to a criminal. We can improve this
estimate by taking into account other geographical features on a map, such as
lakes, rivers or terrains of varying elevation. The presence of irregularly-shaped
bodies of water can potentially have a significant impact on the results of our
computations.

6.2 Profiling Potential Victims

As we observed in the case of the Atlanta Child Murderer, the kernel method
was unable to predict a relatively unexpected kill site (in terms of pure ge-
ography). We may be able to improve our model by skewing our probability
distribution toward areas with high concentrations of potential victims. For in-
stance, Peter Sutcliffe generally targeted prostitutes, so our model would benefit
from increasing the probability of a region being a potential kill site if it has a
high level of prostitution.
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6.3 Improving Computational Efficiency

Our algorithm saves time by overlaying a grid on the map of the region and
saving the distance between every pair of cells. As each distance computation
requires an application of Dijkstra’s algorithm, the determination of all of these
distances is quite slow. With a more efficient algorithm (or implementation
that is faster than what Sage has available) for measuring distances in the road
metric, we can make our grids finer and improve the precision of our model.

6.4 Testing to Choose Optimal Parameters

Since we had a limited amount of time to perform computationally hard tests,
our empirically-determined choice for the variance function h in the kernel
method may be far from optimal. Our model could improve substantially if
we make a different choice for h. Further, the values for f and g that we used
in Rossmo’s model were determined to be optimal for the Manhattan metric;
there may be better choices for these parameters depending on the road metric
in use.

7 Conclusion

The problem of tracking a serial criminal given a limited amount of data has
proven to be very nontrivial. The significant difference between our approaches
highlights the creativity needed to tackle this problem. Both of our methods
proved to be accurate means of locating the hotspots they were designed to find.
The kernel method was particularly viable in the Sutcliffe case, most likely due
to the tendency of attacks to cluster. However, it became less accurate as attacks
spread out more uniformly. Rossmo’s method had strong predictive power in
both of our test cases. It consistently gave hotspots that would allow law-
enforcement to easily locate the criminal. Synthesizing our models by informing
police of all the hotspots we locate is an effective way of balancing accuracy with
the size of search regions.

8 Executive Summary

In our paper we present a computerized model for predicting future crimes and

estimating the location of a criminal based on the location and times of past

crimes. The model is based on geographic profiling and makes heavy use of the

local highway systems near to the crimes. For our model to be useful, it must

be applied to cases where the location of crimes has been determined. For in-

stance, the predictive power of our model is greatly reduced if body dump sites
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are used instead of kill sites. Secondly, our model is most useful if applied to rel-

atively small areas, such as over the area of a county or city. Our model greatly

factors local highway systems into consideration, and thus should be applied

primarily to cases where the perpetrator is suspected of using an automobile for

transportation.

Our model makes two predictions. Firstly it gives an estimate of where

future crimes will occur. The estimate is based on where past crimes have

occurred, putting the most weight on the most recent ones, and also taking into

account the local highway system. It does not give an accurate estimate for

the absolute probability that an offender will be within a particular region, but

instead provides the locations of hotspots where law enforcement should begin

its investigation. By following the paths of constant and slowly changing color,

the officers can logically search progressively larger areas around these hotspots

to gradually increase the scope of their investigation.

Secondly, our model makes an estimate based on Rossmo’s model. This ap-

proach balances two factors affecting the distance a criminal travels to commit

a crime. The first factor reflects the effort expended by a criminal in traveling

farther away from their residence, whereas the second reflects the risk involved

in committing crimes near where a criminal lives. As with the previous com-

ponent of the model, this method provides hotspots at which law enforcement

should begin its investigation, and sequentially larger regions for it to expand

its investigation.

Empirical tests of our model on high profile criminal cases has shown that

both of these methods give useful starting points for investigation. We recom-

mend that your officers apply our techniques to complement the other methods

at their disposal.
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