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Abstract

Political districting has been one of the most contentious issues within

American politics over the last two centuries. Since the landmark case of

Baker v. Carr, in which the United States Supreme Court ruled that the

constitutionality of a state’s legislated districting is within the jurisdiction

of a federal court, many within academia have attempted to produce a

rigorous system for determining a set of districts for a given state. In

this paper, we attempt to improve upon these past efforts. We propose

both a modified form of classical K-means clustering and an interesting

algorithm called the shortest-splitline algorithm to accomplish impartial

redistricting. As an example, we apply our methods to redistricting the

state of New York, and, as further examples, to Texas and Colorado. Both

methods use only population density data and state boundaries as inputs

and run in a feasible amount of time. Our criteria for successful redistrict-

ing include contiguity, compactness, and sufficiently uniform population.

The K-means method produces districts similar to convex polygons and

the splitline method guarantees that the resulting districts have piecewise

linear boundaries. The K-means method has the advantage of allowing

seeding of the district centers. The centers of the generated districts then

roughly correlate to the existing districts, by proper seeding, but the re-

sulting boundaries are vastly simpler.
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1 Introduction

In the words of Ted Harrington, chair of political science at the University of
North Carolina,

There is no issue that is more sensitive to politicians of all colors and
ideological persuasions than redistricting. It will determine who wins
and loses for eight years [You88].

The writers of the constitution created the House of Representatives with
the intention that it would be the branch of government most responsive to the
people. The reality is just the opposite. Though representatives are elected
every 2 years, instead of every 4 or 6 years, almost 400 of the 435 seats of the
House are not contested as a result of the extraordinary power of gerryman-
dering. With the immensely detailed amount of data and unlimited computing
power available to politicians today, gerrymandering has been elevated to an
art. With only the requirements that districts be connected and all have equal
population, it is possible to pinpoint candidates and place them in a different
district than their neighbors [Too03].

Though undemocratic, gerrymandering is nearly always legal (see, for in-
stance, [Bac86]) and has been used to obtain striking results. In 2002 only 4
incumbent representatives lost their bid for reelection — the lowest total ever
[Too03]. We will argue that it is certainly true that any attempt to fairly restruc-
ture legislative districts needs to ignore the human factors that overwhelmingly
determine the current redistricting process. Defining some measure of compact-
ness is essential to ensure fair districts. Both methods we describe produce
districts that at first glance are clearly simpler than the existing ones.

Restructuring the districts with no regard to the current layout would be
more difficult to implement. We will use the centers of the existing districts as
seeds for our clustering algorithm. Thus, the new districts have some correla-
tion to the existing districts, but their boundaries will be determined in a fair
manner. The core of many districts will be roughly the same, while the bound-
aries will be dramatically simpler. This will effectively counteract the effects of
gerrymandering, without being overly difficult to put into use immediately.

1.1 Plan of Attack

Our goal is to develop an algorithmic process for dividing an arbitrary region
into k legislative districts, which satisfy some heuristic definition of fairness. In
order to do so, we must do the following:

• Define terms. Crucial to creating a model is defining the somewhat
ambiguous terms fairness and simpleness.

• Define metrics for comparing algorithms.
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Figure 1: The compactness quotients of the circle, square, and gerrymander are
1, π/4 ≈ 0.79, and 23π/576 ≈ 0.13, respectively.

1.2 Defining Simpleness

We say that district A is more simple than district B if district A is contiguous,
and district A is more compact than district B.

• Contiguity. We say that a district is contiguous if it is arcwise-connected;
that is, if one can travel from any point a to any other point b in district A
while remaining entirely within district A. If A contains regions separated
by bodies of water, A is contiguous if all regions are connected by water
and each region is arcwise-connected.

• Compactness.

Intuitively, we say that a district is compact if it does not meander exces-
sively. This is a hard concept to formalize; many authors give only a hasty
definition of compactness, and some have even argued that compactness
is ambiguous to the point of being irrelevant in a serious treatment of dis-
tricting. Nonetheless, we will now attempt to develop a suitable definition
of compactness.

1.3 Towards a Suitable Conception of Compactness

In [You88], Young gives compelling reasons for abandoning all of the definitions
of compactness mentioned in the second appendix.. Interestingly enough, Young
does not consider the following adjusted version of the Schwartzberg Test, which
is alluded to in [GN70]:
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Definition 1. We say that district A is more compact than district B if

4π AreaA

(PerimeterA)
2 >

4π AreaB

(PerimeterB)
2 .

Call the quantity 4π Area /Perimeter2 the compactness quotient.

For a circle of radius r, this ratio is equal to

4π ·
πr2

(2πr)
2 = 1.

It is well-known that the shape with the largest ratio of area to squared perimeter
is the circle (see, for instance, [Fol02]). Because of this, the quantity

4π ·
Area

Perimeter2

is restricted to the interval [0, 1].
As seen in figure 1, a compactness quotient of 0.13 is visually quite bad.

Using the fact given in [Bou88] that the area of a non-self-intersecting closed
N -gon (with the k-th vertex taken in counterclockwise order equal to (xk, yk))
is equal to

1

2

N−1
∑

i=1

(xiyi+1 − xi+1yi) ,

we have calculated the compactness quotients of several actual districts by ap-
proximating their boundaries by piecewise linear segments. The results illustrate
the inappropriate nature of the districts currently in place. Two of New York’s
more sprawling districts, the 8th and 28th, produced compactness quotients
of 0.097 and 0.101, respectively — even worse then the gerrymander shown
in figure 1! The two most compact districts in New York, the 26th and 21st,
had compactness quotients of 0.406 and 0.498, respectively. We decided that
the mean for any state should be at least .6. With this condition the average
district in every state would be better than the best districts currently in New
York. Furthermore we insist that .25 should be more than 2 standard deviations
from the mean. It is not possible to require that all districts be greater than .25
as several districts will inevitably end up having most of their border coincide
with the border of the state.

1.4 Defining Fairness

Almost all unfairness occurs when political and social measures factor into redis-
tricting decisions. Practices such as concentrating supporting voters in a single
district, diluting opposing voters over several districts, placing two incumbents
in the same district and forcing them to run against each other, and isolating
minorities have been seen many times before (see [Too03] and [Hay96]), and
are all the result of districing being controlled by those who attempt to skew
voting patterns. In general, one can summarize past districting patterns in the
following way:
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Figure 2: Current districts 8, 28, 26, and 21, from left to right and top to bottom,
with compactness quotients of 0.097, 0.101, 0.406, and 0.498, respectively.

• Unfair districting stems from either human biases or poorly de-

signed algorithms.

Our computer simulations do not use any of this extraneous data. The only
data that we have used is population density and the boundary of the state.
Therefore, the determination of districts is completely unbiased. While it may
hold a district may be unfair on a local scale, in that it divides up a community
with a common interest — for instance, a community of apple-growers may be
split between two districts — on the national scale, such imbalances will even
out. Because of this, there will be no pathological examples of disproportionate
representation.

2 Applying the Theory of Data Clustering

The theory of data clustering is the theory of classifying n observations (or
objects) into m groups — for instance, placing two carts’ full of groceries into
into paper sacks. There are two main benefits of applying a cluster-theoretic
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algorithm to a given data set:

• Data clustering often reveals an internal structure that may not

have been initially apparent.

• It is often much easier to work with a small number of clusters

than with a large number of raw data.

The philosophy of data clustering is that we should be able to divide our
data into a (not necessarily fixed) number of clusters, and that the elements of a
given clusters should be somehow similar. In general, data clustering is applied
to problems that deal with a large number of variables. For instance, when data
clustering is used to create an animal taxonomy, there are a myriad of variables
— mode of reproduction, mode of transportation, presence and type of spine,
ideal diet, preferred habitat, and so forth [And73]! Because of this, it is usually
very difficult to determine the “proper” way to cluster data [AC84].

In the case of attempting to draw up simple and fair congressional districts,
we can apply data clustering in the following way:

• Split the state into small, discrete units. Our units correspond to
geographic locations of census population measurements [fIESIN].

• Determine some partition of these units, such that the subsets of

this partition can be viewed as clusters. Note that the only variables
present are the location and population of each unit.

After defining a method for ordering the preference of cluster partitions, we
may suppose we are done with the problem: all that is left is to look at all
possible cluster partitions and choose the best one! However, this turns out to
be not feasible. In [AS68], Abramowitz and Stegun give a proof of the fact that
the number of ways of sorting n observations into m groups is a Stirling number
of the second kind:

S(n)
m =

1

m!

m
∑

k=0

(−1)m−k

(

m
k

)

kn.

For instance, there are more than 1015 ways to sort 25 objects into 5 groups. It
is clear that we need some sort of algorithmic process in order to determine an
appropriate partition of clusters.

3 The K-means Algorithm

3.1 Standard Algorithm

The K-means algorithm is an iterative method for data clustering. Let D =
{xj}

N

j=1 ⊂ R
n be the data to be clustered, and let S = {sj}

K

j=1 be a set of seeds.
Suppose we desire D to be partitioned into K clusters; let the i-th cluster be
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denoted by Ci. Associate to the i-th cluster a geographical center, denoted by ci.
Given an distance function f : R

n × R
n → R, the K-means algorithm proceeds

as follows.

• Initialization: for all Ci, let ci = si.

• Iteration:

– Assign points to clusters: For all x ∈ D, associate x to the center
ci such that f (x, ci) is minimized.

– Update cluster centers: Redefine

ci =

∑

x∈Ci
f (x, ci)

∑

x∈Ci

.

• Repetition: If updating cluster centers changes at least one cluster cen-
ter, repeat the iteration step. Otherwise, stop.

3.2 Weighted Algorithm

To generate districts of appropriate population, we have added a weighting
system to the standard algorithm. Let each cluster correspond to a legislative
district. Let D = {xj}

N

j=1 ⊂ R
2 be the set of census coordinates. Thus, x ∈ D

corresponds to the position of a population measurement. Define a population
function p : D → R such that pi is the population at the coordinates specified
by xi. A cluster Cj is defined by its points x ⊂ R

2, its center xj ∈ R
2, and some

weight αj . Define f to be the Euclidean distance function in R
2. Our weighted

K-means algorithm proceeds as follows:

• Initialization: Using the standard K-means algorithm, assign points to
clusters and centers to appropriate positions.

• Iteration:

– Assign points to clusters:

For all x ∈ D, associate x to the center ci such that αif (x, ci) is
minimized.

– Update cluster centers:

Redefine

ci =

∑

x∈Ci
pif (x, ci)

∑

x∈Ci

pi.

– Update cluster weights:

Redefine

αi = g

(

∑

x∈Ci

pi

)

,

where g is defined below.
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• Repetition: If the properties of the clusters are within our tolerance
levels we stop. Otherwise, repeat the iteration step.

By adjusting the weights, we are able to control the growth or decay of the
clusters. If the weight of a cluster increases, data points are more likely to be
grouped in other clusters. Similarly, decreasing the weight helps to increase the
population of a cluster. Thus the weight function g : R × R → R is crucial in
the performance of the algorithm. We define:

g (p,w) = w

√

i

i0
+ w ·

p

p0
·

√

1 −
i

i0
,

where i is the current iteration, i0 is the maximum number of iterations, and
p0 is the desired population for each cluster. Towards the beginning of the
algorithm, i/i0 is low causing the term w ∗ p/p0 ∗

√

1 − i/i0 to dominate the
weight function. As the i increases, the weight fluctuates less because w∗sqrti/i0
begins to dominate w ∗ p/p0 ∗

√

1 − i/i0. This enables the weights to change
rapidly at the beginning of the iterative process causing the clusters to vary
greatly between iterations. However, by the end of the algorithm, the weights
do not change as readily, allowing stabilization over a optimal clustering. This
is somewhat similar to the process of simulated annealing where initial negative
actions allow the algorithm to escape local optimums and the probability a
negative action is taken decreases over time.

4 Splitline Algorithm

Recently, a very elegant algorithm for districting has been proposed by applied
mathematician Warren B. Smith [Smi].

4.1 Method

The idea behind the splitline algorithm is quite simple:

• Start with the number of districts for the state. Divide that number in
two as evenly as possible, using integers (for instance, 18 = 9 + 9 and
35 = 17 + 18).

• Find the shortest line that divides the state into two parts such the ratio
of their populations is the same as the ratio determined in the previous
step.

• Repeat this process recursively on the subdivided parts until the number
of parts is the same as the number of districts. At every step, the division
is just a line, and so the resulting districts have piecewise linear bound-
aries. Using the shortest line ensures that the districts will have a good
compactness quotient.
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Figure 3: An illustration of the splitline method.

4.2 Demonstration

Figure 3 is a demonstration of the splitline algorithm creating 5 districts from
a simple data set of 15 points. With 15 points and 5 districts there need to be
3 points in each district. 3:2 is the most balanced integer ratio that 5 can be
divided into. At step 1 the algorithm divides the state into two regions with 9
and 6 people respectively, the correct ratios for 3 and 2 districts.

At step 2, it acts recursively on the 2 subdivisions. Thus the region that
had 6 people is divided into regions that have 3 people each, with no more
subdivision needed. The other region is divided into regions with 6 and 3 people,
the appropriate numbers for 2 and 1 districts respectively.

At the third and final step, the last region is split in two and the process is
complete. By using the shortest line at each step, none of the shapes end up
with an unsatisfactory compactness quotient.
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Figure 4: Plots of the population and current districting of New York state,
from top to bottom.

5 An Application: Considering the Congressional

Districting of New York State

5.1 K-means Algorithm

The results given by the K-means algorithm are generally quite good. Tradi-
tionally, when applying cluster-theoretic algorithms, it is common practice to
split off any regions with particularly high population density, and to apply
the algorithm to those regions separately (see, for instance, [GN70]). This was
not needed for the K-means algorithm: even though the maximum population
density of New York City is roughly 2, 000 times the mean population density
of the state of New York, the K-means algorithm produced results within our
tolerance levels.

To confirm that the weighted K-means algorithm we developed was an ef-
fective aid for determining districts, we used it to also redistrict Texas. Texas is
a good choice because it is large and contains a variety of population densities.
The K-means algorithm worked overall well with only a few districts being out-
side our desired tolerance. Because the data set was much larger, the computing
time for each iteration of the K-means was greater. With increased run time of
the algorithm, perhaps even better results could be achieved.
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Figure 5: A proposed redistricting of New York, using the K-means algorithm.

5.2 Splitline Algorithm

To obtain results within our desired tolerance it was necessary to calculate the
districts of New York City separately from the remainder of the state. One
limitation of the current splitline algorithm is that it does not guarantee the
contiguity of districts, see Figure 6. However,it will produce contiguous (and,
furthermore, convex) districts for a convex state.

6 Conclusions

We conclude that both K-means and the splitline algorithm are viable methods
for fair and simple redistricting. K-means produced much better results in our
application to New York: the greatest value of

max
alldistricts

(1 − (clusterpopulation) / (targetpopulation))

, when K-means is applied to the whole of New York state, is no more than
2.5%. As an interesting note, while the unweighted K-means method clusters
data into regions with piecewise linear boundaries, inclusion of the weight func-
tion effectively rounds the boundaries of the produced districts. These rounder
districts have superb compactness coefficients. K-means also has a visually
appealing output and meets all other criteria.

The splitline algorithm results are not quite as satisfactory; however, we
believe that is a result of our implementation and not the algorithm. Even our
flawed version of splitline produced districts simpler than the current districts
in New York. Our implementation could achieve districts with either even pop-
ulation or high compactness coefficients, but not both simultaneously. It was
also difficult to enforce the contiguity requirement in regions posessing a highly
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Figure 6: A proposed redistricting of New York state, using the splitline algo-
rithm and calculating the districts within New York City separately from the
remaining districts

irregular border. We note that when the splitline algorithm is applied to states
with convex boundaries — say,

6.1 Towards a Suitable Definition of Compactness

As discussed in [You88], the following definitions of compactness are often used
or cited in the literature.

• The Visual Test. A district is more compact if it appears to be more
compact.

• The Roeck Test. Find the smallest circle containing the district and
take the ratio of the district’s area to that of the circle. This ratio is
always between 0 and 1; the closer it is to 1, the more compact is the
district.

• The Schwartzberg Test. Construct the adjusted perimeter of the dis-
trict by connecting by straight lines those points on the district boundary
where three or more constituent units (i.e., census tracts) from any dis-
trict meet. Divide the length of the adjusted perimeter by the perimeter
of a circle with area equal to that of the district.

• Length-width Test. Find a rectangle enclosing the district and touching
it on all four sides, such that the ratio of length to width is a maximum.
The closer the ratio is to 1, the more compact is the district.

• Taylor’s Test. Construct the adjusted perimeter of the district by con-
necting by straight lines those points on the district boundary where three
or more constituent units (i.e., census tracts) from any district meet. At
each such point the angle formed is “reflexive” if it bends away from the
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district and “non-reflexive” otherwise. Subtract the number of reflexive
from the number of non-reflexive angles and divide by the total number
of angles. The resulting number is always between 0 and 1; the closer to
1, the more compact the district.

• The Moment of Inertia Test. Locate the geographical center ci of each
census tract i in the district. Select an arbitrary point x and calculate the
square of the distance from x to ci, multiplied by the population of tract
i. The sum of these numbers is the district’s moment of inertia about he
point x. That point which gives the minimum moment of inertia is the
center of gravity of the district. The smaller the moment of inertia about
the center of gravity the more compact is the district.

• The Boyce-Clark Test. Determine the center of gravity of the district
and measure the distance from the center to the outside edges of the
district along equally-spaced radial lines. Compare the percentage by
which each radial distance differs from the average radial distance, and
find the average of the percentage deviations over all radials. The closer
the result is to 0, the more compact is the district.

• The Perimeter Test. Find the sum of the perimeters of all the districts.
The shorter the total perimeter, the more compact is the districting plan.

— there are no discontiguities; furthermore, every district is then convex. In
the case of simple states, the splitline algorithm works well — perhaps even
better than the K-means algorithm. Its intuitive simplicity is also likely to
make shortest splitline more appealing to the public.

Both K-means and splitline are deterministic: that is, when each algorithm
is applied to a fixed problem, and all parameters are constant, the final result
is unique. Some authors have expressed the opinion that any good districting
algorithm is deterministic [Hay96]. There is one human element involved in the
K-means algorithm: the choice of seeds is made, in some sense, subjectively,
by the person implementing the algorithm. This factor could be completely
eliminated by randomly picking the seeds, but this is not the most desirable
solution. Random seeds can produce solutions far from the global optimum of
the optimization function, and require many more iterations to get an answer
within a given tolerance level. The natural choice is to use the approximate cen-
ters of existing districts as seeds. At first, this may seem contrary to our goal
of reversing the effects of gerrymandering. A closer analysis of gerrymandering
shows this is not true. Gerrymandering relies on intricately carving districts
based on data that is invisible to our algorithm — say, distribution of people
of various ethnicities, or distribution of people of varying income level or polit-
ical affiliation. Correlation of district centers also has the benfit of easing the
transition phase.

As of now, the K-means algorithm clearly performs better on more com-
plex data sets. The splitline algorithm works well on simple data sets, but
struggles with more complex sets — for instance, the state of New York. We
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maintain that the splitline algorithm should not be abandoned, but our final
recommendation is that The K-means algorithm quickly and determinis-

ticly produces systems of districting that satisfy all requirements on

simplicity and fairness, and applying this algorithm would produce

a drastic improvement over the current district plans of any state in

the United States.

A Various Definitions of Compactness

The following definitions of compactness are said in [You88] to be representative
of those definitions favored in past and present scholarship.

As discussed in [You88], the following definitions of compactness are often
used or cited in the literature.

• The Visual Test. A district is more compact if it appears to be more
compact.

• The Roeck Test. Find the smallest circle containing the district and
take the ratio of the district’s area to that of the circle. This ratio is
always between 0 and 1; the closer it is to 1, the more compact is the
district.

• The Schwartzberg Test. Construct the adjusted perimeter of the dis-
trict by connecting by straight lines those points on the district boundary
where three or more constituent units (i.e., census tracts) from any dis-
trict meet. Divide the length of the adjusted perimeter by the perimeter
of a circle with area equal to that of the district.

• Length-width Test. Find a rectangle enclosing the district and touching
it on all four sides, such that the ratio of length to width is a maximum.
The closer the ratio is to 1, the more compact is the district.

• Taylor’s Test. Construct the adjusted perimeter of the district by con-
necting by straight lines those points on the district boundary where three
or more constituent units (i.e., census tracts) from any district meet. At
each such point the angle formed is “reflexive” if it bends away from the
district and “non-reflexive” otherwise. Subtract the number of reflexive
from the number of non-reflexive angles and divide by the total number
of angles. The resulting number is always between 0 and 1; the closer to
1, the more compact the district.

• The Moment of Inertia Test. Locate the geographical center ci of each
census tract i in the district. Select an arbitrary point x and calculate the
square of the distance from x to ci, multiplied by the population of tract
i. The sum of these numbers is the district’s moment of inertia about he
point x. That point which gives the minimum moment of inertia is the
center of gravity of the district. The smaller the moment of inertia about
the center of gravity the more compact is the district.
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• The Boyce-Clark Test. Determine the center of gravity of the district
and measure the distance from the center to the outside edges of the
district along equally-spaced radial lines. Compare the percentage by
which each radial distance differs from the average radial distance, and
find the average of the percentage deviations over all radials. The closer
the result is to 0, the more compact is the district.

• The Perimeter Test. Find the sum of the perimeters of all the districts.
The shorter the total perimeter, the more compact is the districting plan.

B Numerical Results

In this section we give a more detailed overview of our numerical results in
districting New York state, along with the results of applying the K-means
algorithm to Texas and Colorado. The purpose in applying our algorithm to
these states is to give some semblance of proof that the K-means algorithm will
apply to essentially every state in the United States.

B.1 Compactness quotient results

Note that in the long table of compactness quotients, the column on the left is
used only to enumerate these quotients. Quotients in the same row should not
be compared in a pairwise fashion.

N mean std range
K-means 29 .658 .177 .775
Splitline 29 .480 .167 .695

District No. K-means Splitline
1 0.603467 0.20358
2 0.912486 0.609967
3 0.71772 0.650431
4 0.767607 0.520665
5 0.816948 0.436889
6 0.699194 0.447266
7 0.720281 0.517044
8 0.741351 0.586529
9 0.880247 0.371716
10 0.744034 0.096317
11 0.724836 0.44827
12 0.651049 0.528087
13 0.428957 0.359168
14 0.811315 0.35745
15 0.737009 0.709886

District No. K-means Splitline
16 0.646914 0.592954
17 0.672443 0.552759
18 0.672738 0.755555
19 0.695763 0.511479
20 0.807295 0.605663
21 0.695065 0.641265
22 0.819779 0.424846
23 0.39237 0.611651
24 0.705848 0.610452
25 0.441429 0.434587
26 0.452181 0.636516
27 0.682806 0.251353
28 0.306814 0.27772
29 0.13779 0.156226
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Figure 7: A proposed redistricting of Texas, using the K-means algorithm.

B.2 Population distribution error

The population distribution error is measured as the sum of the squares of

1 − (current cluster population) / (target cluster population)

divided by the number of clusters.

K-means Splitline
New York (29 districts) 1.799e-004 8.5032e-005
Colorado (7 districts) 5.6784e-006 1.7361e-004
Texas (32 districts) 4.4160e-004 -



Control No. 1036 18 of 18

Figure 8: Two proposed redistrictings of Colorado, using the K-means algorithm
and the splitline algorithm, from left to right.
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