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Abstract

QuickPass is a virtual queuing system that allows some theme park
customers to significantly cut down their waiting time by scheduling their
ride in advance. The purpose of this paper is to propose innovative Quick-
Pass systems that maximize customer enjoyment. We propose that only
a small portion of customers can effectively use QuickPass, and a good
system will maximize this group subject to the constraints that (1) reg-
ular users are not significantly affected and (2) maximum waiting time
for QuickPass users is small. To build a solid foundation, we define and
test a simple model for single line formation before addressing QuickPass.
We then develop two QuickPass systems, GhostQueue and KalmanQueue.
GhostQueue is an intuitive and simple system, but we find it would be far
from optimal in practice. We then propose that the best model is one that
adapts to its environment rather than one that tries to enforce rigid pa-
rameters. We implement KalmanQueue. KalmanQueue is a highly adap-
tive system that uses a Kalman filter to adjust the number of QuickPasses
given today based on the maximum length of the QuickPass line yester-
day, while filtering out random noise. We simulate the KalmanQueue sys-
tem with a C++ program and randomized input from our line formation
model. We find this system quickly converges to a nearly optimal solution
subject to our constraints. It is, however, sensitive to some parameters.
We discuss the effects of these findings on the expected effectiveness of
the system in a real environment. We conclude that KalmanQueue is a
good solution.
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1 Introduction

Millions of people visit amusement parks every year. Waiting in long lines is
one of the major reported complaints among large amusement parks, such as
Disneyland. Recently, a new concept has been developed and tested in many
major theme parks to reduce the waiting time for some visitors. The underlying
idea is fairly simple: rather than wait in line for a popular ride, visitors purchase
special tickets that tell them when to come back, and when they return at that
time, they expect to wait in a very short line before going on the ride.

Many such systems have been tested and implemented in theme parks around
the world, including QuickPass, FastPass, Freeway, Q-lo, Ticket-To-Ride, and
others. Some have failed, to be replaced by augmented versions, and others
have thrived. The appeal of these systems to amusement parks is two-fold:
they increase people’s enjoyment of the park, and they allow people to invest
more money into the park while they are not waiting in line.

There have been several implementations of the idea. All of the systems we
researched assumed the number of QuickPass users was small, and accounted
for it either by restricting the total number of QuickPasses or having a certain
number per hour during peak times. Also, joining the two lines has been an
issue, some parks choosing to blend the two lines at some point before the
attraction, and some actually at the ride. The system we develop will address
these issues.

2 Plan of Attack

Our goal is to design a good QuickPass system, one that would maximize cus-
tomer enjoyment. This is a very broad problem, and it is not immediately clear
what “customer enjoyment” means. We must restate the problem mathemati-
cally by narrowing our focus and defining our goals in order to obtain a good
model, as well as discuss what a good model should be.

• Define Terms: We must state a definition of “guest enjoyment” and
explain what affects it, why, and how we will model it.

• State Assumptions: Discussion of our assumptions will enhance our
understanding of QuickPass systems and allow us to restate the problem
in a mathematical way.

• Describe a Good Model: An effective QuickPass system will have
certain desirable characteristics. Describing these will steer our model in
the right direction.

Once we have established our definitions, assumptions, and goals, we will present
our models.

• Line Formation Model: Understanding line formation helps us describe
general amusement park behavior. The QuickPass system is at its core
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a line manipulation system, and we cannot hope to design it without
understanding line formation first.

• GhostQueue: A Simple Model: We describe a simple approach to the
QuickPass system. While it is an optimal solution in an error-free ideal
world, if implemented its capacity is limited.

• KalmanQueue: An Adaptive Algorithm: We propose, model, and
test an adaptive algorithm as a solution to the QuickPass system. We
provide a simple implementation using a Kalman filter, and test it using
randomly generated input. We then discuss the strengths and weaknesses
of our specific implementation and of the model in general.

3 Increasing Enjoyment

• Key Points: Enjoyment - Fairness - Priority

Guest enjoyment is a subjective concept. However, if we keep our ideas about
guest enjoyment simple, we can make useful assumptions just from common
sense. Once we have described how guest enjoyment varies, we can introduce a
qualitative measure of how to utilize it in our model, and justify our choice.

1. People enjoy wandering freely more than they enjoy waiting in
a line.

This is the basic assumption that makes virtual queuing potentially useful
for increasing guest enjoyment. When not in line for a specific ride, guests
are able to enjoy more of the park’s attractions, including other rides,
food-courts, and shopping areas.

• We assume enjoyment of the park increases as overall wait-
ing time decreases.

2. All people must perceive that they are being treated fairly.

A QuickPass system must operate logically and be comprehensible, at least
in function, to the customers. A system that is perceived as random may
cause discontent even if it minimizes waiting times. We saw an example of
this given in the problem, where unexplained changes in scheduled times
between adjacent tickets caused complaints.

3. QuickPass must not significantly deter from the enjoyment of
those not using it.

Here we assume that the population of QuickPass users is small compared
to the total amusement park population. We justify this assumption when
discussing our models. Given this idea, it is clear that we cannot compro-
mise the enjoyment of the majority in favor of the QuickPass users, since
this will not benefit amusement park goers overall.
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This immediately leads to useful conclusions. For example, regardless of
QuickPass implementation, rides must continue to operate at capacity as
long as there is demand, otherwise the general population is affected and
upset.

Stating these assumptions shows us the characteristics of a good enjoyment
measure in our model. We use these assumptions as constraints in any model we
propose. The QuickPass system is more enjoyable to all who use it, and does not
significantly affect those who do not use it. Thus to maximize park enjoyment,
we should maximize QuickPass use, subject to the constraints defined above.

• To maximize park enjoyment, maximize QuickPass use subject
to constraints.

4 Properties of a Good Model

We can write down what we look for in a good model. We are considering
QuickPass to be an actual system to be implemented in an amusement park. A
good solution should have the following properties:

1. Solves the problem.

Our model should maximize user enjoyment as we have defined it, subject
to the constraints we defined. It need not be optimal, but it should be
very good.

2. Ease of implementation.

We are intending for this system to be used in an actual theme park.
Thus we aim for simplicity of implementation rather than mathematical
complexity.

3. Ease of use.

We cannot have unreasonable expectations of people using the system.
That is, we do not want a system that only runs smoothly when everybody
shows up exactly on time, and degenerates when this is not the case.

4. Not be sensitive to random events.

Park attendance can vary over time, and how people use rides can be
modeled by various probability distributions. We want the effectiveness
of our QuickPass system to not decrease due to random chance.

5. Adjustable and adaptive.

We do not want a model with a large number of parameters that have to
be set and reset every day because of various conditions. We want a model
that can easily be adjusted, or adjust itself, based on its environment.

Now that we have defined our terms and set our goals, we discuss our tools
and models.
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5 Basic Queuing Theory: Is It Useful?

• Key Points: Queuing theory assumption - Impossibility of application
to old fashioned theme park lines - Motivation for applying to QuickPass
lines - Short example from our cafeteria

Queuing theory is a pre-existing and well researched branch of mathematics,
with applications ranging from grocery store line models to computer processing
event queues. This section will introduce the basic concepts of queuing theory,
and discuss how we can apply them to our specific problem. We will see that
the concepts are more applicable to our GhostQueue implementation of the
QuickPass system than to our model for the regular line largely because of the
unavailability of precise data.

The QuickPass system operates during peak hours, when the lines formed
for major attractions are not increasing at a significant rate. Because of this
observation, we assume that we are in a steady state. This assumption makes
sense, because we expect people to stop getting into lines if they grow too large.

Once we are in a steady state, we can make the following key assumptions:

1. Mean people served per minute, µ, is constant.

2. Mean people arriving per minute, λ, is constant.

3. On average, more people are served per minute than arrive.
That is, µ > λ.

Assumptions 1 and 2 mean that neither services nor arrivals depend on any
other factors, most importantly time and preexisting line length. Note that for
both of these parameters, only the time averaged input and output rates are
being considered, but the time between any two consecutive arrivals or
departures need not be the same. This randomness leads to nonintuitive
conclusions below. Assumption 3 is valid, since if it was not the case, the line
would continue to grow.
Given these assumptions, the following results can be quickly derived as in [2].

mean number of people in line =
λ2

µ(µ − λ)
(1)

mean waiting time for those who wait =
1

µ − λ
(2)

probability of having to wait = ρ =
λ

µ
(3)

For general lines we expect the probability of having to wait to be less than 1.
It is often the case that a customer arrives and can be immediately serviced.
However, when the service is a popular attraction, from our own experience we
know the chance of a line being empty during peak hours is approximately zero.
If we examine (1) and (2) we see that problems arise when λ ≈ µ. That
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Table 1: Statistics for Ten Popular Roller Coaster Rides at Cedar Point Amuse-
ment Park (Complete with somewhat tongue-in-cheek ”Thrill Rating”) [1].

Thrill Rating Average Wait Time Riders/Hr Name of Ride
3/5 15-30 min 1,400 Blue Streak
3/5 15-30 min 2,000 Iron Dragon
2/5 15 min 1,800 Jr. Gemini
4/5 30-45 min 2,000 Magnum

4.5/5 45 min 1,800 Mantis
5/5 1+ hours 1,600 Millennium Force

4.5/5 45 min 1,800 Raptor
5/5 1-3 hrs 1,000 Top Thrill Dragster

4.5/5 45 min 1,000 Wicked Twister
3.5/5 30 min 1,800 Wild Cat

is, both the mean waiting time and the line grow arbitrarily large when ρ is
near one. Now consider a ride with a wait time of one hour, like those in Table
1.

60min =
1

µ − λ
⇒ µ = λ −

1

60

We see that in order to accurately predict the waiting time, even on the order of
an hour, one must know the parameters λ and µ to at least two decimal places.
This may be possible given accurate statistics collected over a long period of
time. However, these figures are not easily found, perhaps due to competitive
nature of the theme park business. In short, we need a new model for long
lines.

• A New Model: It is necessary to have a model that (a) can predict the
long wait times shown in Table 1 and (b) is not terribly sensitive to the
parameters µ and λ.

We will pursue this goal in section 6. However, we will present a short
example that suggests queuing theory can be used when wait times and line
lengths are small.

5.1 Queuing Theory in Our Cafeteria

While it seems that we can not apply queuing theory results to our long lines, it
is possible they are useful for short lines. In order to justify further application
of this theory, we collected some primitive data during the noon lunch rush in
our university’s cafeteria. From this data we find that λ = 1, µsubs = 1.1 and
µpizza = 4. This gives us the following:
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Figure 1: Observed line length as a function of time at the sub shop and pizzeria
in our university cafeteria during the 12:20 lunch rush

0 2 4 6 8 10 12 14 16
0

5

10

15

20

25

Time (min)

Lin
e l

en
gth

 (p
eo

ple
)

Sub Shop
Pizzaria

pizzeria mean wait time =
1

4 − 1
= .33min and

sub shop mean wait time =
1

1.1 − 1
= 10min.

Since we have attended these places a large number of times, we can say from
personal experience that these figures seem accurate. It remains to be seen how
this can be applied to our amusement park lines. If our QuickPass system has
the same characteristics of the sub shop or pizzeria, then we are in great shape.

6 Long Line Formation Model with Limited Sen-

sitivity

• Key Points: Line model based on a motivated differential equation - Too
stable - Generally agrees with experiment - Computer simulation.

Assumption: We need to consider only one line. We justify this as-
sumption because we can treat every ride at an amusement park as independant.
The number of visitors to a ride with QuickPasses for another ride is assumed
to be small. Their impact is thus neglected in our model.

The previously cited queuing theory results assume that the average rate of
people who arrive and average rate of people who are served are constant. We
will discard these assumptions and write down a differential equation approach
to modeling a line. Then we will selectively add assumptions as necessary or
justifiable to produce a realistic approach.

The rate of change of the length of a line should depend on the number of
people in the park, probability that they want to join the line, and the constant
number of people the ride is servicing. So,
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The rate of change of line length L is given by the input rate I minus the
output rate O

dL(t)
dt

= I − O. (4)

The input is the number of people who join the line. This is given by the
product of the population who could get on the ride, P , with the probability
that they are interested in the ride during one time interval, α.

dL(t)
dt

= αP (t) − O (5)

Where

• α, the probability that someone joins the line, is potentially a function of
the current length of the line, and the perceived fun of that ride.

• P (t), the number of people in the park, is a function of time.

• O is a constant, since rides are run only as often as the machinery allows.

Let us assume that α is a constant. Then, for the estimate of park attendance
shown in Figure 2 the solution to (5) is intuitively clear. The line will be zero
length until the park population reaches the O

α
line, then it will briefly have an

increasing slope. Next, the slope is constant until park attendance begins to
decrease. Only then will the line reach its maximum as park attendance falls
below O

α
.

Figure 2: Line length L(t) as predicted by (5) given constant α and the park
population P(t) shown.

L(t)

open close time

People

noon 6 o’clock

P(t)

O
α

The longest lines are occurring around the peak. This is also the flattest
part of the line length curve, varying on the order of ± 10% during the time
span about the peak. Since this is exactly the time period in which our model
is to be effective, we make the assumption that standard line lengths do
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not change greatly over time. This will be useful in our estimates of the
effectiveness of the virtual queue. This assumption is further justified by the
belief that people will be less likely to get into long lines, thus line length will
level off before the peak expected by this simple model, but stay constant due
to the increased input when length starts to go down.

By its very nature, the differential equations we write down assume a lack
of variation on the part of guests and ride operators. If both agents act with
clockwork precision, the above approach would be sufficient, but this is not the
case.

• Queuing theory and common sense tell us that the differential equations
approach is too deterministic.

The distribution of arrival times has been shown above to be an important
factor in understanding line evolution. A good model must thus take these sta-
tistical deviations into account. Even so, the line predicted in Figure 2 matches
remarkably well with the limited data we have collected as shown in Figure 1.
To incorporate statistical deviations into our model we introduce a computer
simulation.

6.1 Computer Simulation of Long Line Model Plus Noise

• Key Points: How our computer simulation works - Data, Diff. Eq.
Model, and Simulation all agree.

This section describes how our computer simulation works. As a general
overview, it dequeues (removes from the queue) at a fixed rate, enqueues (adds
to the queue) at a rate dependant on time, and both are subject to noise.

The rules that define the behavior of our simulated queue are as follows:

1. Time is subdivided into N discrete time steps.

2. A person is dequeued with a fixed probability, subject to noise
from a random number generator.

3. A person is enqueued with a variable probability, also subject to
noise. The probability of enqueuing is a function of time step.

We can refer to Figure 3 for an example of what output this simulation gives.
In this case, N=2000, an average of one person is dequeued per time step, and
zero to two people are enqueued per time step as shown in the figure. Note that
this figure closely resembles our model for line growth shown in Figure 2 and
our collected data shown in Figure 1.

• Section 9 will use this same program in a new way to test an
adaptive QuickPass system.

Now that we have developed a line formation model, we can go on to discuss
the effect of implementing a QuickPass scheme.
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Figure 3: Simulated line length with respect to time step given “population”
input shown.
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7 Mixing the Two Lines

• Key Points: Physically Implementing any QuickPass Scheme at the
Point Where the Two Lines Merge

Before we propose detailed QucikPass schemes, we should make precise our
notion of how we are going to physically implement these systems. A single,
standard, line system at an amusement park is much less complex than a system
with a QuickPass. Any QuickPass system necessarily introduces the possibility
of four lines:

1. The standard line (to get onto the ride).

2. The QuickPass line (to get onto the ride).

3. The Kiosk Line (to get the QuickPass).

4. The line to get into the QuickPass line (because customers are
not allowed to enter until their alloted time).

For our purposes we will assume that the Kiosk line will be very fast serving,
and that the line will therefore be negligible. The fourth line is a bit of a paradox.
The QuickPass system was implemented for those people who do not like waiting
in line, so it seems this line should be small. If this proves not to be true in
practice, then people are missing the point of the QuickPass system. We will
therefore assume that the fourth line is insignificant.

Not all parks are equipped or desire to have two lines meeting exactly at the
ride.

• We must integrate the standard line, and the QuickPass line
some time before the ride.

This also makes sense because time spent arranging people in line is not lost;
these people are waiting anyway. Yet, time spent arranging people on the ride
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pre-ride platform could possibly cause delays in getting people on the ride. This
hurts everyone, so it must be avoided.

We propose to always mix the lines about five to ten minutes before the pre-
ride platform. The mixing rate could potentially be controlled by the Quick-
Pass system itself. Whether the rate is constant or variable, a system of red
light/green light watched over by an employee could be used to mix the lines
without too much trouble.

8 GhostQueue

Key points: A “ghost queuing” system is defined - This common sense ideal
system is unstable - Few people can benefit from this system.

This process behaves as if the guest has a “ghost” that stands in line for him,
calling him back only when he has reached the front of the line. We will find
that GhostQueue works well at very limited capacity, but it becomes subject to
the same problem as regular lines as capacity grows.

• Assumption: The wait time for the normal line is known to the
system. Many current systems of virtual queuing, such as Disneyland’s
FastPass, provide this information at the QuickPass kiosk [3]. This is
provided by the knowledge of the average rate at which a line moves, a
statistic available to theme park management. A park employee can, for
instance, enter this information into the QuickPass system at frequent
intervals.

The GhostQueue system works in the following way:

1. A guest enters his ticket into the kiosk.

2. The kiosk looks at the current length of the normal line and
returns a ticket stamped with this time. This is the beginning
of a short time window for returning to the GhostQueue line.

3. The guest is free to roam about the park.

4. When his window is about the begin, he makes his way back to
the ride.

5. The employee administering the ride first takes people from the
GhostQueue line, then brings the ride to capacity from the nor-
mal line.

6. The person has a great deal of fun on the ride and is no longer
in any line.

In theory nothing has changed for people in the standard line. That line
acts exactly as if all guests were still present, even if only their ghost waits. The

12
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average wait time, w̄ is given by

w̄ =
Total Time Waited

Total People
(6)

With some people not waiting, yet the total people staying the same, w̄ seems
goes down with each new person using the ghost queue.

• The optimal solution thus appears to be (but is not!) assigning
everyone a ghost and watching the average wait time drop to
zero.

Why is this not the best approach? People returning at a predetermined
time is not a deterministic process, but rather a probabilistic process, so our
queuing theory results are applicable. In order to run at capacity and not have
a standing line outside, people must arrive at the same rate that the ride is
boarding. In the parameters of queueing theory, this means λ = µ. However,
equation 2 tells us that

Mean wait time for entry =
1

µ − λ

λ→µ−→ ∞.

Thus, as was remarked previously, it is not enough to simply strike a balance
between expected number of people coming arriving and expect zero wait time.
In fact,

• If we run the fully ghosted system at capacity, actual wait times
would get arbitrarily long!

Reducing the number of ghost spots is equivalent to reducing λ. Since we
wish to keep the wait time small for users of the ghost queue, we must both

1. make 1
µ−λ

small and,

2. keep the system stable to variations in λ.

The second goal is met when d
dλ

1
µ−λ

= 1
(µ−λ)2

is small. The first goal implies
that µ − λ be made as large as possible. Both goals thus encourage the same
end result. However, if the ride is not always filled by the ghost queue, which,
due to random distribution of arrivals, will occur at some times no matter what.

• Therefore, there must be a standard line to keep the ride full.

From the perspective of a guest, the length of the visible standard line must
be related to its wait time, or else they will view the line as unfair. For example,
if there were only 20 people in the standard line, but only 1 person per minute
was boarding a roller coaster from that line - the rest coming from the ghost
queue - then this would not be an attractive line in which to stand. A balance
needs to be created between this perceived fairness and the average wait time.

13
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• The GhostQueue system is thus feasible only if the number of
people who use it is kept low relative to the number using the
normal line.

The above conclusion relies partially on a notion of how fairness affect happiness.
However, in the opening sections of this paper we introduced fairness as an
absolute requirement. Thus, it is beyond the scope of our model to weight
fairness quantitatively.

It should be noted that a similar system, Lo-Q, is in use at six Six Flags
amusement parks. The user limit comes from a finite number of devices that
must be rented to access the ghost queuing feature. Based on the claim that
750,000 people had used the system by October of 2003 [4], after the end of the
warm weather peak season, and a total 2003 attendance across the six parks of
approximately 13,000,000 visitors [5], this puts the average utilization around
20%, in agreement with the magnitude of usage predicted above.

9 An Adaptive Algorithm Using a Kalman Fil-
ter

• Key Points: Idea of a Dynamic Algorithm - Set up Dynamic Algorithm
- The Dynamic Algorithm Itself (Kalman Filter) - Testing/Implementing
this System

9.1 The Idea of an Adaptive Algorithm

As was remarked in previous sections, line growth is most appropriately modeled
with a semi-chaotic, or at least probabilistic, approach. Optimization becomes
difficult to define in chaotic system. We therefore introduce an adaptive model
that does not try to maximize anything per say, but instead tries to adaptively
make today’s performance better than yesterday’s.

• Instead of trying to achieve a rigid optimal solution, we try to
stay near a good solution by continually adapting.

A simple, albeit crude, adaptive algorithm might count the number of people
who have to wait more than say 10 minutes in the QuickPass line today, and
then assign that amount fewer QuickPasses tomorrow. Among the problems
with this algorithm are (a) the sensitivity to random variations in attendance,
and (b) lumping the whole day into one block of time is too coarse to capture
many subtleties of park attendance. We propose then an algorithm that breaks
the day into more blocks of time, and is not as sensitive to random fluctuations.

9.2 Set up for an Adaptive Algorithm Implementation

The set up for this dynamic algorithm is described largely in Figure 4. We have
a traffic control box which knows how many people are in each line. This traffic
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Figure 4: A diagram of the park showing the elements including the Traffic
Control Center, the Kiosk, and of course the FUN
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control box uses an algorithm to determine how many QuickPass tickets should
be available per each hour time slot. This information, as well as the wait times
for the standard and QuickPass lines are fed into the Kiosk. The Kiosk displays
these waiting times, and gives people an option for which time to return. The
noon and one options are blacked out indicating that those time slots are full.

9.3 Assumptions for Adaptive Algorithm

Before we describe our algorithm, we state our assumptions.

1. There is little day to day variation in the overall distribution of
park attendance.

We can make this assumption because the QuickPass system will be used
during the peak seasons and peak hours. It is reasonable to expect that
the pattern of line formation for a specific attraction will change slowly
over those times. Thus if we wish to predict demand for QuickPasses for
a block of time during day k, we should consider the demand during that
same block of time during day k − 1.

2. We set the number and times of QuickPasses at the beginning
of the day.

Our system clearly displays how many QuickPasses are available for pur-
chase, and for which time slots. People can buy these at any point during
the day, even non-peak hours, on a first-come-first-serve basis. The system
is thus fair and logical, and will not behave strangely if there is variation
in line formation. Furthermore, it maximizes enjoyment of the people who
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choose to buy the QuickPasses, without affecting everybody else as long
as we keep that number small.

3. Line speeds at peak hours are nearly constant.

As long as the ride is operating without breakdowns, people are using it
at a constant rate. Thus there is a certain speed V with which the lines
are moving, and this information is available at specific theme parks from
previous research.

4. We allot a portion of space on the ride for QuickPass users.

The percentage of ride seats made available per unit time for QuickPass
users is the same as the mixing rate of the normal and QuickPass lines.
We would like to maximize this mixing rate subject to the constraint that
people in the normal line do not notice the slowdown. This maximum
mixing rate, M , can easily be found from a pilot study, or just taken
to be reasonably small, on the order of 5-10%, if a pilot study is not an
option.

5. We declare a target maximum QuickPass queue length.

We are trying to maximize use of the QuickPass system, without making
the QuickPass line too long.

9.4 Kalman Queue

The Kalman filter is a set of recursive equations that provides a computation-
ally efficient solution to the least squares method [6]. Kalman filters have many
applications, most notably in autonomous navigation systems. They are ap-
propriate here because our model is a discrete-time controlled process, and also
because Kalman filters should satisfy our requirements for a good model. We
will briefly describe general Kalman filters, and then show how we use them in
our model.

• A Kalman filter can be used to estimate a state X ∈ <n at time k + 1
using the state X at time k and an observation Z at time k.

Kalman filters are adaptive, yet they filter out random noise to yield a stable
system. As the subscripts indicate, we are working with some timestep k. The
following equations describe a general Kalman filter with no control input.

Xk+1 = A ∗ Xk + wk (7)

A relates the previous state to the next state and wk is Gaussian process
noise.

Zk = H ∗ Xk + vk (8)

Zk is the observation made at time k, and H relates the magnitude of the
state to the magnitude of the input. vk is the Gaussian measurement noise.
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Now we consider our model.

• State: Number of QuickPasses available for a given block of time.

We only keep track of this quantity in our state, so n = 1.

• Measurement: (Target QP queue length − Attained QP queue length.)

If this simple difference is positive, we should assign more QuickPasses
the next day, since the QuickPass system is not running at capacity. If
it is negative, the QuickPass line is too long, and we should assign fewer
QuickPasses the next day.

• Finding H

H is a scalar that relates the magnitudes of state and input. We assume
the QuickPass line is moving at speed Mv, and so a clear choice is

H =
1

Mv
(9)

We now give our recursive equations for the Kalman filter. As we have no
control input, we only need the measurement update equations.

Kk+1 =
Pk ∗ H

H2Pk + R
(10)

Xk+1 = Xk + Kk(Zk − H ∗ XK) (11)

Pk+1 = (1 − Kk ∗ H)Pk (12)

Here, P is the error covariance, R is the measurement noise, and K is a
quantity known as the Kalman gain.

The variables X, P , and K are clearly related, as each adjusts per iteration
depending on the other ones. Though the relationship seems complicated, the
adjustments are intuitive. The measurement Z is scaled by K, the Kalman gain.
K is thus a measure of how much we trust the measurement when computing
the next state based on previous experience. The Kalman gain varies with R,
and would simply be 1

H
if R = 0, which means that we would simply add Z

to X if Z was completely accurate. Additionally, the condition R = 0 would
impose the condition Pk = 0, which also makes good sense.
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9.5 Testing Our Adaptive Algorithm

• Key Points: Guessing Parameters - Applying line length simulation -
Experimental Results

Our Kalman filter takes as input four parameters: P0, K0, R, and H.
P and K are self-adjusting, and so the filter is not sensitive to those initial
conditions. H and R, however, strongly affect the convergence of the model.
Amusement parks keep their attendance data closely guarded, so we do not have
correct values for these parameters to use with real data. As a result, we are
forced to guess reasonable values for these parameters and create our own test
situation. We emphasize that an actual amusement park can easily calculate
these parameters from their statistics and obtain much better initial values and
parameters that will ensure lightning-fast convergence. We show here that even
with our rough guesses the Kalman filter still settles to equilibrium fairly quickly.

We tested the filter by iterating the computer simulation described in section
6.1. Given initial values, the first relevant output from the Kalman filter is
the number of QuickPasses assigned per hour block of time. We assume people
arrive uniformly over their assigned block, which is justified in section 9.6. Given
this, and the number of QuickPasses assigned per block, we can make a graph
of how many people are arriving as a function of time. This is exactly the input
for our computer simulation previously developed.

• We can think of the distribution of people into blocks as a new special
population in the park and feed this into our simulation for line growth
to determine the length of QuickPass line.

• This is a simulation.

This test does not capture the true power of our adaptive algorithm because
we do not know the parameters H and R, and our model for line growth is
a fairly rough and simple probability model. In actuality the data which the
Kalman filter uses as input is smoothed by the large number of people in a real
system with known parameters. Kalman filters have been extensively tested in
real world situations and found very effective for similar processes, so we expect
it to be effective for this one. However, we should still test our implementation
and see how well the Kalman filter can model it.

The Test:

1. We assume the peak time of day is subdivided into six equal blocks. A
real amusement park might subdivide further, if behavior varies too much
within the blocks. We “couple” the blocks by having the final queue length
of block i as an initial queue length for block i + 1.

2. We use the same model for line formation as in our simulation in section
6.1. Additionally, we attach a Kalman filter to each block. We emphasize
that the blocks are coupled, so the behavior of each block depends on the
previous blocks.
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3. We guess parameters (H, R) and far fetched intial values (K, P , Qpb:
QuickPasses Per Time Block) for the initial Kalman filter input.

4. Subject to noise, we input this Qpb into our line growth model. The
Kalman filter measures the deviation of the actual line from the ideal line.

5. The Kalman filter outputs a new value for QPB, K, and P. We now have
a new value for QuickPass for every block.

6. We iterate this process 1000 times. The output of step 5 is the output of
step 4.

7. We confirm visually that regardless of initial values, the Kalman filter
converges to a steady, optimal QuickPass number per block that results
in a stable and optimal QuickPass queue length over time.

Figure 5: Number of QuickPasses alloted per hour as determined by Kalman
Filter and QuickPass line length as determined by line growth model for days
1, 10, 20, 30 and 900.
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A pictographic version of the results of a trial are shown in Figure 5. An
actual plot of the results is shown in Figure 6 The system output was pro-
grammed to vary around 100 people per hour, but we input the initial value of
120 QuickPassers per hour. We can think of each timestep as previous similar
day. For instance, Saturday is more popular than Wednesday, thus when using
this system on a Saturday, we look to last Saturday’s data. Clearly, for the first
day the the line grows rapidly as the ride can not service the demand. If we
think of each iteration as a day, then the figure shown is day 10. By day 10
the line has visibly deformed. On days 20, 30 and, finally, 900 the QuickPasses
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Figure 6: A plot of the QuickPasses alloted day by day given wildly wrong initial
values. Figure shows how the Kalman filter stabilizes over time even without
good data to begin with.
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distributed per hour result in a nearly constant and optimal QueuePass queue
length.

For our test we made wild guesses about QuickPass distribution initially
and tried a few values for H before chosing one that worked reasonably. Fig-
ure 7 shows the dependance on H. An increase of a factor of 8 in H only
corresponded to a difference of about 15%, indicating good stability in this pa-
rameter. The largest effect is, as expected, the rate of convergence. Higher H
values make it converge much faster and stay more stable, at the cost of having
lower queue lengths. The purpose of this test was to show that Kalman filter is
highly adaptive. In an actual implementation of this scheme the initial values of
QuickPass distribution and the parameter H can be determined very precisely
from previously collected data. Thus our algorithm is likely better than
this test indicates.

• The initial variation in QuickPass distribution would be much less in an
actual implementation.

Figure 7: The dependance of our model on the parameter H. Note that should
be determined from accurate data collected at the park rather than guessed as
we did.
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Figure 8: Sketch of how to add normal distributions to achieve constant arrival.

It was necessary for the purpose of testing to make the Kalman filter make
big adjustments because our line growth model is not as variable as actual line
growth.

9.6 Uniform Arrival Rate Justification

• Key Points: It is reasonable to say people arrive uniformly over their
block of time.

People either arrive uniformly over their block of time, or they arrive with
some distribution throughout their block. Assuming they arrive with a fixed
distribution over the course of their block, we should be able to overlap the
blocks in such a way that the average arrival is still a constant. For example,
Figure 8 shows a rough idea for how was can overlap the blocks assuming people
arrive with a normal distribution about the center of their block. This complex-
ity is well suited to being added in after a model is running sufficiently well, as
it adds complexity while not significantly increasing usefulness.

10 Conclusions

The GhostQueue system decreases wait times and thus increases happiness.
However, the manner in which this is done is hard to optimize. Fairness con-
siderations would be difficult to define and test. We suggest GhostQueue as a
good solution only if an external way of keeping GhostQueue utilization low,
such as selling access to it, is applied.

The KalmanQueue process was designed in accordance with our defined
criteria for a good model. It has been shown above to meet these criteria,
though it has some sensitivity in its parameters. Because these parameters
can be determined from detailed observation of a ride, we state this is not a
sufficient reason to doubt this model. The dynamical optimization approach is
also easy for the park to use, since the system adjusts itself to meet an ideal
line condition. We recommend the use of a KalmanQueue system for
rides with large line lengths.
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11 Strengths & Weaknesses

General Model

• Strengths

– We developed a theoretical line formation model which agrees with
our rough data. Our computer model agrees with both despite work-
ing on different principles, implying it behaves as we want.

– Our line model incorporates the natural randomness of human be-
havior.

• Weaknesses

– Current line length is not taken into account by the line formation
model. In real life, a person will be more likely to join a short line
than a long one, which our model does not predict.

– We ignore the effect of the virtually queued people being able to join
standard lines, thus increasing the standard line wait time.

– Our model is only valid during peak hours.

– No claims are able to be made about the idealness of our solutions.

GhostQueue

• Strengths

– The return time calculation is simple and intuitive for the guest.

– No guest waits longer than if he would have without the GhostQueue,
thus making the system seem fair.

• Weaknesses

– The utilization must be kept low for GhostQueue to be beneficial.

– Fairness becomes a dominant factor in optimal utilization. Our as-
sumptions do not quantify fairness, thus optimizing it is beyond the
scope of the model.

KalmanQueue

• Strengths

– The primary input is the desired behavior of the QuickQueue line and
the model adjusts itself accordingly. Thus an administrative decision
is all that is needed to make the system work properly.

– The KalmanQueue process satisfies all six properties of a good model,
as defined in section 4.
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– The Kalman filter is highly adaptive to subsequent changes in the
queuing process (e.g. time varying output rates), thus the core frame-
work is valid for a wide variety of alterations.

• Weaknesses

– Our model assumes a constant line mixing rate, which does not seem
likely to be ideal.

– H, the adjustment parameter, and R, random variance of the num-
ber of Q-Passes distributed, must be determined accurately for the
model to be useful.

– The Kalman filter currently tries to decrease the maximum QuickPass
queue length. A future model should try to decrease the average
QuickPass length.
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