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Abstract

A significant percentage of the Earth’s surface is farmland. Unfortu-
nately, nature does not usually supply enough rainfall for the types of
plants that most farmers want to grow. For this reason, there has been
a fair amount of engineering research devoted to irrigation technology.
Much of this work, however, appears to be based on empirical data and
crude estimates. One particular instance of this is the design and place-
ment of sprinkler systems on fields. We are interested in developing a pre-
cise mathematical model/algorithm to determine the design and schedule
of a hand-move irrigation system for small fields. The goal is to minimize
the amount of time required by the farmer to move the sprinklers while
ensuring that no portion of the field receives either too much or too little
water.

The flow of water from a pump through a pipe system to a set of sprin-
klers is governed by Bernoulli’s equation and the equation of continuity.
To model the distribution of water out of each sprinkler we calculate the
trajectory of water droplets emitted from the nozzle as they split into
smaller drops and are affected by air resistance. The precipitation rate
distribution from a pipe-set is then determined by superposition of the
individual distributions.

Based on the parameters determined by these models, we use a sim-
ulated annealing algorithm to find the configuration of pipe-set locations
that produces the most uniform precipitation distribution across the field
for a variety of parameters. An instance of the traveling salesman prob-
lem is then needed to determine the optimal order to move the pipe-set
through the specified locations. For low parameters we are able to solve
this problem with an exhaustive search, but for larger values we employ
a heuristic approach known as the Christofides algorithm. We estimate
the walking time required by the farmer to move the pipe-set in the order
produced from this algorithm. For each choice of parameters (number of
sprinklers and number of pipe-set moves), we rule out the configuration
if flooding or drought occurs. Finally, we recommend to the farmer the
configuration that has minimal upkeep cost (in terms of walking time)
that has not been ruled out. This configuration is a slightly skew square
patter in which a pipe-set consisting of 3 sprinklers is placed horizontally
and moved around the corners of the field after running in each position
for 11.25 hours. This configuration has a maximum precipitation rate of
0.26cm/hr and a minimum accumulation of 2.99cm in four days.
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Figure 1: The pipe-set of a typical hand-move irrigation system (photo obtained
from USDA website[1])

1 Introduction

A common device for irrigating a field is a hand-move irrigation system. This
is a set of straight aluminum pipes, each with a sprinkler extending vertically
into the air, that can be joined together to produce a line of sprinklers known
as a pipe-set (see Figure 1). The pipe-set is placed in the field and at regular
intervals the farmer disassembles the pipes, moves them one at a time to a new
location, and then reassembles them. This process of moving the pipe-set is
time-consuming, so the farmer is inclined to perform as few moves as possible;
however, if the pipe-set remains in any one place too long the crops in that area
will become hyper-saturated whereas those in other parts of the farm will suffer
from dehydration.

1.1 The Problem

Our goal is to produce a model of this type of irrigation system and develop an
algorithm based on this model to determine the optimal irrigation schedule for
a given field. In particular, we wish to find the location and period of pipe-set
placements in a field of size 80m×30m that minimizes the time required by the
farmer subject to the following constraints:
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Constraints:

• No part of the field is to be over-watered (receive more than 0.75 cm
hr on

average) or under-watered (receive less than 2cm in 4 days).

• The total length of the pipe-set is 20m, the inner diameter of each pipe is
10cm, and the nozzle diameters are 0.6cm.

• The volumetric flow rate of the water pump may not exceed 150 liters per
minute, and a constant pressure of 420kPa is maintained at the inlet of
the pipe-set.

As part of this problem we also determine the optimal number of sprinklers
to place on the pipe-set. In addition to these constraints, we make a few basic
assumptions about the setup:

Assumptions:

• Wind patterns are rather unpredictable and thus do not affect the choice
of irrigation scheme.

• The orientation of the pipe-set is fixed throughout the schedule to mini-
mize the difficulty of movements for the farmer.

• The sprinklers are spaced uniformly across the pipe-set.

• The farmer moves the pipe-set at regular time intervals, so that the sprin-
klers are running in each location for the same amount of time.

1.2 Our Approach

The general problem consists of two components: the model and the algorithm.
We break the model up into a few submodels. We also divide the optimization
algorithm into several phases to reduce the number of parameters under con-
sideration at each stage of computation. This approach is outlined as follows:

Model:

1. Using basic fluid mechanics, determine the velocity and volume of water
at the sprinkler nozzles induced by the pump.

2. Calculate the distribution of water emitted from a single sprinkler, incor-
porating air resistance and variation in water droplet size/velocity/angle.

3. Produce the total precipitation rate distribution of the pipe-set by super-
position of multiple sprinklers.

4. Estimate the time required for the farmer to move a pipe-set from one site
to another.

Algorithm:
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1. For a fixed number of sprinklers and pipe-set sites, call them s and l
respectively, use a simulated annealing optimization process to determine
the configuration of pipe-sets that produces the most uniform precipitation
rate distribution throughout the field.

2. Create a table of the configurations resulting from step 1 as s and l vary
over a specified range.

3. For each such configuration find the optimal ordering of pipe-set sites to
minimize the farmer’s walk time (i.e. solve a particular instance of the
Traveling Salesman Problem) and create a table of these cost times.

4. Determine which configurations in the table from step 2 satisfy the mini-
mum and maximum water requirements (i.e. rule out schedules in which
flooding or drought occur).

5. Of the configurations not ruled out in step 4, choose the configuration
with the minimal total walk time calculated in step 3.

2 Water Pump and Pipes

The two principles needed to understand the behavior of fluid in a pipe (see [2])
are conservation of mass, which is expressed in the equation of continuity:

vA = constant (1)

where v is the velocity and A is the cross-sectional area at a given location in
the pipe, and conservation of energy, which is essentially Bernoulli’s Equation:

p +
1
2
ρv2 = constant (2)

Here p is pressure and ρ is the density of water. Technically there is also a
term ρgy in Bernoulli’s equation representing potential energy due to gravity,
but everything in our problem occurs at the same altitude y, so this term drops
out.

2.1 A Pipe with One Sprinkler

Consider the pipe in Figure 2 with cross-sectional area A1 attached to a pump at
one end and a sprinkler with nozzle area A2 at the other. Let v1 be the velocity
of the water flowing near the pump and v2 the velocity at the nozzle, and let
p1, p2 be the pressures at the corresponding locations. Then by Bernoulli’s
equation we have that

p1 +
1
2
ρv2

1 = p2 +
1
2
ρv2

2 . (3)

Using the equation of continuity, we get

v1 =
v2A2

A1
, (4)
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Figure 2: Water flowing from a pump to a sprinkler

so we can solve for the velocity at the nozzle:

v2 =

√
p1 − p2

1
2ρ(1− (A1

A0
)2)

. (5)

Now p1 is the given pressure at the pump (in our case 420kPa) and p2 is atmo-
spheric pressure (101.325kPa), so this formula allows us to compute an actual
numerical value for the nozzle velocity. There are, however, two potential limi-
tations to this equation:

1. Pump capacity

By the equation of continuity, the volumetric flow rate q = vA remains
constant throughout the system. Since the pump has a maximum flow
rate qmax (in our case qmax = 150 liter

min ), the flow rate through the nozzle
qnoz = v2A2 must satisfy qnoz ≤ qmax. Therefore, if the nozzle velocity
given in equation (5) exceeds qmax

A2
it must be replaced by qmax

A2
.

2. Pressure loss due to friction

In the real world, a certain amount of water pressure is lost due to friction
in the pipe. This has been found to behave according to the Hazen-
Williams formula[3]:

∆p = −4.55L
(q/c)1.852

d4.87
(6)

where L is the length of the pipe, d is the diameter, and c is a roughness
coefficient (c = 120 for aluminum pipes such as the ones in our pipe-
set). Fortunately, the loss in a 20m pipe-set according to this equation is
0.334kPa, which is insignificant relative to the other pressures involved.

2.2 Multiple Sprinklers

Now suppose that there are n sprinklers placed uniformly along a pipe. Because
friction is negligible, the flow rate through each nozzle is distributed uniformly
among the sprinklers. Moreover, the pressure drop across each sprinkler induces
a current independent of the others, so the total flow through all the sprinklers
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is simply the sum of those predicted by the previous case – as long as the pump
capacity is not exceeded. Putting all this together shows that,

the velocity at each nozzle of an n-sprinkler pipe-set irrigation system is:

vnoz =





√
ppump−patm

1
2 ρ(1−( Anoz

Apipe
)2)

, if nqnoz ≤ qmax

qmax

nA2
, otherwise

(7)

3 Flow Distribution from the Sprinklers

We now determine the precipitation distribution from the pipe-set.

3.1 Modeling Droplets

We model the spray of water as a collection of individual, spherical droplets,
each considered using the model developed in [5]. In particular, we assume that
the motion of a droplet is given by

d~v

dt
= −gẑ − η|v|2v̂r2

m
(8)

where g = 9.8m
s is the acceleration due to gravity, ~v is the velocity vector of the

droplet, m is its mass, r its radius, η = 0.855 kg
m3 a constant of proportionality,

and v̂ = (v1, v2)/
√

v2
1 + v2

2 the unit vector in the direction of the velocity (here
v1 and v2 denote the horizontal and vertical components of the velocity, re-
spectively). Splitting this vector equation into components and using difference
equations, we can rewrite this equation as

dv1 = −ηr2v1|v|
m

dt (9)

dv2 =
(
−g − ηr2v2|v|

m

)
dt (10)

We then apply Euler’s Method to these equations, with dt = 0.001, to determine
the velocity of the droplet. Applying Euler’s method again to the equation

d~x = ~vdt (11)

gives the path of the droplet.
Next, we assume that droplets break up at a rate λ = λ0|v|r2, where λ0 =

5000breakups
sec m3 is a fixed constant. When a droplet A splits, the mass is divided

among two new droplets, B and C, with the mass of the new droplets determined
from a uniform distribution. Each new droplet is given a slightly different
vertical velocity component from that of its parent. As smaller droplets have a
lower terminal velocity, a droplet that splits will fall closer to the sprinkler than
one that does not.

7



Page 8 of 22 Control #21

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Droplet Flight Path and Splits

Distance (Meters)

H
ei

gh
t (

M
et

er
s)

Figure 3: The flight-path of a single droplet as it splits into several drops.

3.2 Modeling a Sprinkler

We model the flow of water from the sprinkler as a collection of droplets. Un-
fortunately, little data is available regarding the characteristics of the water
distribution. For the sake of definiteness, we assume that:

• The sprinkler is 0.45 meters above the ground (estimated from Figure 1).

• The sprinkler launches droplets with velocity given by a normal distri-
bution with mean velocity v determined by equation (5) and standard
deviation 0.4v.

• The droplets have an initial direction uniformly distributed between 0 and
30 degrees.

The allows us to estimate the water flow from a single sprinkler (see Figure 4).

Because the sprinkler has a rotating spray nozzle, the orientation of the
droplet trajectory is slowly rotated around the sprinkler. We assume that the
angular velocity of the nozzle is small enough that it does not affect the individ-
ual droplet motion. This gives a distribution of droplet landing points centered
at the sprinkler as depicted in Figure 5, and we can use this to determine the
precipitation flow rate on the farm near this sprinkler (Figures 6 and 7). For low
water velocities (10m

s or less), the distribution of water is approximately bell-
shaped. For higher velocities, the distribution becomes more volcano shaped.
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Figure 4: Flow of water from a sprinkler.
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Figure 5: Landing positions of droplets relative to the sprinkler.
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Figure 6: Distribution of water relative to the sprinkler, v = 6 m/s.

−20
−10

0
10

20

−20
−10

0
10

20

Distance (Meters)Distance (Meters)

Figure 7: Distribution of water relative to sprinkler, v = 12 m/s.
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Figure 8: Superposition of four sprinklers to produce the distribution from a
pipe-set.

3.3 Flow from a Pipe-set

We can now produce the precipitation rate distribution from the entire pipe-set
simply by super-positioning distributions of the individual sprinklers calculated
in the previous section according to equation (5). The result is pictured in
Figure 8.

3.4 Farmer Movement Times

The time required for the farmer to move the irrigation system depends on
various factors. First, the farther he has to move the system, the longer it will
take. Second, we assume that each sprinkler is connected to its own pipe, with
the sum of the lengths of the pipes being fixed at 20 meters. Thus a large
number of sprinklers in the irrigation system results in significant assembly and
disassembly times and repeated trips per movement of the irrigation system.
However, a small number of sprinklers results in long, unwieldy pipe assemblies.
In particular, the time required to move the irrigation system is the time required
to disassemble and reassemble, plus the time required to carry each sprinkler to
the next site, plus the time required to walk from the new site back to the old
one. To model the time required of the farmer to move the irrigation system,
we used the following equation:

T = 2nt + βndeαl +
nd

v
(12)

where T is the total time required for the farmer to move the irrigation system, n
is the number of sprinklers, t is the time necessary to assemble one pipe/sprinkler
system, l = length of pipes = 20/n, v = 1 m/s is the natural walking speed of
the farmer, and α and β are the fixed constants. For our model we took α = 1/5
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and β = 1/10, as these values gave a reasonable movement time of about 30
minutes.

4 Irrigation Scheduling Algorithm

We would like to find the number of sprinklers s on a pipe-set and an ordered list
of coordinates C = ((a1, b1), . . . , (al, bl)) representing sequential pipe-set sites
so that the time required of the farmer to adhere to the irrigation schedule is
minimal, subject to the flood/drought constraint. To accomplish this, we first
find the irrigation schedules that yield the most uniform possible precipitation
rate distribution throughout the farm for each fixed value of s and l = |C|,
since these configurations will have the greatest chance of meeting the watering
constraints.

Suppose the farmer has decided to use an irrigation schedule with l different
pipe-set locations. Since we are assuming that the pipe-set remains at each
location for the same amount of time, the average precipitation rate at a given
location in the farm is equal to the sum of the precipitation rates due to the
pipe-set at each location divided by the number of locations. Formally, if we
let w(x, y) be the average precipitation rate at coordinates (x, y) in the field
(i.e. the number of inches of water applied each hour averaged over the entire
irrigation schedule), then

w(x, y) =
w1(x, y) + w2(x, y) + · · ·+ wl(x, y)

l
(13)

where wi(x, y) is the precipitation rate that would be experienced if the pipe-set
were fixed at location (ai, bi). This allows us to visualize an irrigation schedule
simply by super-positioning the precipitation distributions due to each fixed
location and then scaling the net result.

4.1 Measuring Uniformity

Throughout this section assume the number of sprinklers s and pipe-set locations
l are fixed. Our goal is to choose the locations in a way a that maximizes
the uniformity of the average precipitation rate w(x, y). A natural measure of
uniformity is given by the squared distance from the mean:

n∑

i,j=1

(w(xi, yj)− µ)2 (14)

where the field has been discretized into an n× n grid and µ =

n∑
i,j=1

w(xi,yj)

n2 .
Let Q((a1, b1), . . . , (al, bl)) be this squared distance interpreted as a cost

function dependent on the coordinates C = ((a1, b1), . . . , (al, bl)) of the pipe-set
positions. Then we want to find the (ai, bi) that minimize the cost Q. To do
this, we use a modified Monte Carlo method known as simulated annealing.
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4.2 Simulated Annealing

The parameter space we are dealing with in this optimization process is too vast
to search exhaustively, so we must be content to find an approximate solution.
The difficulty is that when minimizing the cost Q numerically, it is easy to get
stuck in a local minimum that is far inferior to the global minimum. There is
a general method for bypassing this trap known as a Metropolis algorithm[4],
which we can apply to our case as follows:

1. Place the l coordinates (ai, bi) for the pipe-set positions randomly in the
field.

2. Compute the cost Q of the current configuration.

3. Randomly perturb all the coordinates by a small amount.

4. Compare the new cost Q′ with the old one.

5. If the change in cost ∆Q = Q′−Q is negative then accept this perturbation
and go back to step 2.

If ∆Q is positive, indicating a step in the wrong direction, then with a
certain probability accept the perturbation and return to step 2, otherwise
return the points to the previous coordinates and go to step 2.

The probability in the last step depends on the size of ∆Q (the worse the
perturbation, the less likely it will be accepted). Simulated annealing gives
a more intelligent way to determine which “bad” perturbations should be ac-
cepted. The idea is to introduce a temperature parameter T > 0. The higher
the temperature, the more willing we are to take bad steps. After a specified
number of iterations through the loop, the temperature is decreased and the
loop resumes. This process continues until the temperature reaches zero. This
allows the optimizer to explore the overall landscape at first, and then settle
into a specific optimum (hopefully the global one) at the end. Concretely, at
each iteration of the loop you should accept the perturbation if

e
−∆Q

T > R(0, 1) (15)

where R(0, 1) is a random number chosen uniformly from the unit interval. The
results of this algorithm for a few different values of s and l are pictured in the
appendix (Figures 12-19).

4.3 The Traveling Farmer Problem

Once a configuration of pipe-set locations has been determined, it still remains
to decide what order to move the pipe-set through these sites. The goal is to
minimize the distance the farmer has to walk during the irrigation schedule.
This is an instance of the well-known Traveling Salesman Problem. For most
of the configurations we consider, the number l of locations is low enough that

13



Page 14 of 22 Control #21

an exhaustive search is suitable. However, for l > 10 the computational re-
quirements are beyond our resources – and for farms larger than the one we are
considering (so that an even greater number of sites is required), an exhaustive
search is completely unreasonable. Therefore we suggest a heuristic approach
to find a near-optimal solution.

Since the farmer’s walking path is measured with the ordinary Euclidean
distance, so that the triangle inequality is satisfied, the problem reduces to an
easier case known as the Euclidean TSP. With this simplification, there is a
constant-factor approximation algorithm (due to Christofides[6]) that always
finds a tour (path through all the sites) of length at most 1.5 times the optimal
tour (see [7]):

1. Find a minimum spanning tree T .

2. Find a minimum distance perfect matching M among those vertices with
odd degree in T .

3. Form the multigraph G by combining the edges of T and M .

4. Find an Eulerian cycle w in G and, by bypassing the vertices that have
already been visited, form a tour t.

It is possible to find an Eulerian cycle in G because there will be an even
number of vertices with odd degree in T due to the handshaking lemma, so that
all vertices of G have even degree. The intuitive idea behind the correctness
of the algorithm is as follows: the length of a tour is an upper bound for the
length of a minimum spanning tree because given any tour, the deletion of any
edge yields a spanning tree. The complexity of the algorithm is O(n3), where n
is the number of vertices, as opposed to O(n!

2 ) for the exhaustive search.

4.4 Flooding and Drought

For a given configuration, to determine if any portion of the field receives too
much water we simply find the location in the field with maximal precipitation
rate and see if it is less than 0.75 cm

hr . This value represents the precipitation
rate when averaged over the entire scheduling scheme. To ensure that no plants
become dehydrated, we need to measure how much water accumulates at the
location of minimal precipitation rate in the configuration. For this, we assume
that the farmer is only able to keep the sprinklers running for 12 hours per day,
since he has other chores to attend to and most likely does not want to run the
irrigation system overnight. With this assumption, the 4-day precipitation total
is given by w(48-t), where w is the precipitation rate at the point in question and
t is the time required to perform all l moves in the schedule (this latter quantity
must be subtracted from the total precipitation since the sprinklers are turned
off while the pipe-set is being moved). As long as this value is greater than
2cm at all points in the field, we are content that the plants will have sufficient
water.

14
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Figure 9: The time required to maintain a schedule for a 96 hour period.

5 Conclusion

Using the data calculated from the water-flow models, we ran the pipe-set place-
ment algorithm for values of s and l both ranging from 1 to 10 to produce a table
of configurations that are optimal with respect to precipitation rate uniformity.
We then determined an optimal tour for each configuration and estimated the
time required by the farmer to maintain the schedule for each 96 hour period.
The result of these cost calculations is depicted in Figure 9.

Next, for each configuration we calculated the maximum precipitation rate
averaged over the schedule and the minimum precipitation accumulated in a
96 hour period. If either of these values were outside the constraints specified
earlier, we eliminated the configuration. The results of this are illustrated in
Table 1 (an ‘X’ indicates a flood/drought situation and an ‘O’ indicates a valid
configuration). The configuration with minimal cost that was not eliminated
in this fashion is the one with 4 positions and 3 sprinklers. This configura-
tion is pictured in figure 10. We now summarize the salient features of this
configuration:

• Maximum precipitation rate: 0.26 cm
hr .

• Minimum accumulation over 96 hours: 2.99cm.

• Total time required by the farmer to move sprinklers in a 4-day period: 3
hours.

The instructions for the farmer to use this schedule as follows:

15
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Table 1: Valid configurations, as a function of number of pipe-set positions
(vertical) and number of sprinklers (horizontal).

1 2 3 4 5 6 7 8 9 10
1 X X X X X X X X X X
2 X X X X X X X X X X
3 X X X X X X X X X X
4 X O O X X X X X X X
5 X X O O X X X X X X
6 X O O O O O O O X X
7 X O O O O O O X X X
8 X O O O O O O O X X
9 X O O O O O O O O O
10 X O O O O O O O O X
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Figure 10: The precipitation distribution for the configuration we recommend.

16



Page 17 of 22 Control #21

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

Starting
Point

Figure 11: Instructions for the irrigation schedule we recommend.

1. Place the pipe-set horizontally at coordinate (15.3,3.3), where the South-
West corner of the field is taken to be the origin.

2. Leave the sprinkler running for 11.25 hours.

3. Move the pipe-set North to (21.2,27.7) and leave it for 11.25 hours.

4. Move the pipe-set East to (62.3,26.8) and leave it for 11.25 hours.

5. Move the pipe-set South to (60.2,1.2) and leave it for 11.25 hours.

6. Move the pipe-set West and repeat this cycle every 96 hours.

6 Appendix

Here we display some of the interesting configurations that were produced by
the simulated annealing algorithm.
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Figure 12: Precipitation rate distribution for 4 sprinklers, 4 positions.
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Figure 14: Precipitation rate distribution for 2 sprinklers, 6 positions.
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Figure 15: Locations of the pipe-sets.
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Figure 16: Precipitation rate distribution for 6 sprinklers, 8 positions.
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Figure 17: Locations of the pipe-sets.
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Figure 18: Precipitation rate distribution for 8 sprinklers, 9 positions.
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Figure 19: Locations of the pipe-sets.
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