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1 Introduction

A queue is a universal headache. It is never fun to be stuck standing in line. As most people do not
spend a majority of their day caught in a queue, we have a tendency to accept its presence in modern living.
Being caught in a queue will lower one’s perceived experience of their surroundings, and can have a negative
impact on an establishment’s image, and eventually business.

Amusement Parks, while a favorite vacation destination, have acquired a debilitating association with
endless lines. We are presented with the problem of implementing alternative ticketing schemes, called
QuickPass Schemes, to cut down lines and maximize enjoyment of guests at an amusement park.

We develop a model utilizing probabilistic processes to simulate the movement of guests in an amusement
park, with each ride varying in popularity. A variety of potential QuickPass ticketing schemes are developed
and integrated into our model of an amusement park. We define the enjoyment of our park to be a simple
mathematical relation, and study the effects of each QuickPass scheme on the population’s enjoyment of our
park.

We find that a scheme where QuickPasses act as placeholders in a ride queue creates the highest increase
in enjoyment by our definition. This frees up the rider to do more in the park and still come back to enjoy
that ride with a much shorter time in line.

Since reliable data on amusement parks is difficult to find, our model may not be as realistic as we would
like.

2 Basic Model

2.1 Definitions

• Enjoyment is the following ratio: Average Number of Rides Per Person
Average Time Spent in Line

• A QuickPass is a ticket with a return time: a time interval. If a person has a QuickPass, they are
authorized to return to a ride during that time interval to gain access to the special QuickPass queue.

• A QuickPass is expired if the current time is later than the return time.

• A QuickPass is redeemed when a person holding it enters the QuickPass queue.

• A QuickPass is active if it is not expired and has not been redeemed.

• A QuickPass is live if the current time lies within the return time.

2.2 Commonly Used Variables and Expressions

• t is the current time.

• Lt is the current number of people in the all queues at a specified ride at time t.

• Qt is the current number of active QuickPasses for a specified ride at time t.

• ωt is the estimated wait time at a specified ride at time t. ωt is ALWAYS the sum of the people in line
and the number of active QuickPasses. Alternately;

ωt := Lt + Qt

2.3 Model Development

2.3.1 Park Design

We begin by creating a model amusement park to test potential QuickPass schemes. Our idealized park
is open daily for 840 minutes (14 hours). Our park contains three types of attractions:
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Figure 1: Visual Representation of Amusement
Park Model with the implementation of the Quick-
Pass System

• Big Rides: Designed to represent major attractions in an amusement park. Develops queues during
busy periods of the day. Each Big Ride is capable of having two queues, a normal queue that any
patron can join, and a QuickPass queue that only patrons with an active QuickPass can join.

• Small Rides: Designed to represent smaller attractions in an amusement park, including less popular
rides (e.g., teacups). Develops queues during busy periods of the day.

• Food Vendors: Designed to represent restaurants in an amusement park. Traps the potential rider
duration for a period of time.

Our model amusement park assumes all activities are equidistant from each other. In an architectural
tradition that dates back to the late 1800s, amusement parks have been laid out into ”Spacial Zones”, in
which each zone has its own unique theme and offerings.[1] Grouping a few major attraction per zone with
correspondingly more smaller attractions is also a well known pattern in amusement park design [1]. Our
model tests potential QuickPass schemes in one zone of the park. Assuming the traffic in each spatial zone
is relatively consistent, our model can easily be applied to approximate the effects on a larger, multi-zone park.

2.3.2 Rider Characteristics

Our model has a simulated population of automated state machines that ”ride” attractions. The popu-
lation grows based on a generator function that shall be discussed later. The model simulates a population
wandering around the park, searching for entertainment and food.

The people in our park cycle through a variety of states, illustrated in Figure 1.

• None: When a person enters the park, or completes a ride, they begin in the None State, and imme-
diately move into the ”Travel” state.

• Travel: A person in the ”Travel” state is searching for something to do. They will approach one of the
attractions, which are weighted to provide a sense of popularity. Big Rides will draw a larger crowd
than Small Rides, and so forth. If a person returns to the ”Travel” state with an active QuickPass,
s/he will automatically go join the QuickPass queue.

• Eating: When a patron chooses to approach a restaurant, s/he is held in the Eating stage for a fixed
period of time to correspond to the time that would be allotted to eating. Afterwards, the patron
returns to the ”Travel” state.

• Gone: Our simulated people can also leave the park. It is assumed that the average amusement park
patron spends 8 hours in the park. A person can choose to move from the ”Travel” state to the ”Gone”
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state; removing them from the population. After a fixed time, representing the closing time, all patrons
will move to the Gone state.

When a person approaches a ride, s/he will go through an algorithm to determine his/her actions:

• First, a person can potentially request a QuickPass if they approach a Big Ride. Data from an amuse-
ment park that is currently operating with a similar system to a QuickPass system shows that 80% of
park patrons are using it. [2] Therefore, we set our patrons to request a QuickPass 80% of the time.

Next, the person will decide whether or not to join the queue for the ride.

• Refuses Normal Line: When faced with a long line, some people will choose not to join the queue and
is forced to make into the travel. This is termed balk in terms of queuing theory.

• Joins Normal Line: The person joins the queue at the end of the line by moving to the ”Normal Line”
state. It is assumed that no people will leave the queue.

2.3.3 Modeling Park Population

While the main concern is behavior of our park while it is heavily populated, it would be naive to assume
that the park begins a typical day with a large population. Our simulation contains a people generator which
acts as the entrance to our theme park. Since a decline in population is the result of the simulated people
choosing to leave, we are left to model the people as they arrive at our park.

Unfortunately, we were unable to find published data on daily admission patterns for an amusement park,
and even the data on maximum capacities for amusement parks. This is rightfully so due to the privacy
policy parks are required to adhere by.

Due to this difficulty, a generalization argument has to be made. Since our main objective is to stress
test our model with a maximum population in order to test the efficiency for a testing scheme. Thus, we use
the following impulse function that cuts off after the park has been open for 360 minutes (6 hours):

∆Population =

{
(PeakPopulation)

(360minutes) if t ≤ 6 hours;
0 if t > 6 hours.

People are added to our park on a constant basis until we hit a predefined maximum. This population
growth equation is kept constant throughout all our schemes and therefore we are not required to mimic the
potentially complex and unpredictable true-to-life guest arrivals in order to provide fairly exact outputs.

2.4 Model Strengths

• Stability: Consistent population inputs produce consistent results.

• Simplicity: There only exist two interacting parts that interact in predictable ways. Simple counting
people, and integrating different QuickPass Algorithms.

2.5 Model Weaknesses

• Relatively Little Supporting Data: We were unable to find data to use as a basis for comparison, and
justification. The model was developed by assuming, justifying, and building on top of each other,
logical arguments to reach a purportedly valid model.

• Consistent Line Upper Bounds: Each potential Rider in the system will wait just as long for a popular
ride as they will for an unpopular ride. This is something that could easily be cleaned with true-to-life
data, but for now it just happens to be a busy day at the teacups.

• Expired QuickPasses: When patrons take a QuickPass, their return time is not part of the considera-
tion. Potentially large numbers of people can leave the park without redeeming their QuickPasses.
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Figure 2: Visual Representation of Amusement
Park Model by setting QuickPass distribution to
zero

Most, if not all, of these problems can be fixed in the future versions of our model. However, all that
we need is the data to input into our model. Since this is currently unavailable, me take our resultant
assumption as the best case we can deal with.

3 Park Operations Under Various QuickPass Schemes

3.1 The Control

In order to have something to compare against, all tests were first run with no QuickPasses. Although
the QuickPass algorithm is already built into the model, all that is necessary to make our model run without
them is by setting the total number of QuickPasses distributed to zero.

3.2 A Crude QuickPass Scheme: Fixed Interval Rule and Variable Interval Rule

For comparison with the control, we consider a scheme which establishes no restrictions on the number
of QuickPasses that are issued, called the Fixed Interval Rule. Calculating ωt only at the beginning of a
fixed interval of length λ, (15 minutes in our simulation) all Riders requesting QuickPasses receive a return
interval of:

Ireturn = (t + ωt, t + ωt + λ)

Upon returning to redeem their QuickPasses, the Riders are integrated with the Normal line on a proportional
basis. Riders are allowed onto the ride with one goal in mind: Forcing the QuickPass queue and the Normal
queue to return to zero at the same time. Any borderline case is given to the QuickPass Queue to encourage
its use.

While this scheme should work fine for smaller loads on the QuickPass system, high loads present a
problem. Returning QuickPass users are subject getting through the interval irrelevant of how many people
are in that interval. Since rides have a max speed, they can only handle so many people per interval. Thus
there exists a possibility in this scheme where people are not serviced. We conclude, therefore, to see a select
few QuickPass riders being “stuck” in line for long periods of time.

A simple variation on this scheme, the Variable Interval Rule recalculates ωt during a shorter interval,
and creates much larger return intervals (λ) for issued QuickPasses (1 hour in our testing). The desired
effect of this system would be that QuickPass users would have an even larger interval window to arrive at
the ride without sacrificing service quality. However, because it builds on the Fixed Interval Rule which is
already expected to have an undesirable outcome.

This scheme is expected to fail. There are unbounded numbers of park patrons getting Quick Passes for
intervals of time where only a fixed number of people can ride the Big Ride. It is expected that both queues
to get unreasonably long, and thus patrons spend as much, if not more time in queues in the control model
with fewer rides.
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Figure 3: Depicts the principle behind
the Fixed Interval Rule, which is specifi-
cally developed to preserves order in the
queue. In the interval of time ∆t, anyone
that arrives at the QuickPass distributor,
is given a time interval to return that is
the same interval as if they never left the
line. The QuickPass return times that are
given by ω0 to ω0 + ∆t, where ω0 is the
projected wait time for the first person in
the interval of time and ∆t is the amount
of time QuickPasses that are to be handed
out within the same interval of time.

3.3 The Shortest QuickPass Line: A Bounded Scheme

The goal with this proposed scheme is to place a bound on the number of people on the ride at any given
time that board using a QuickPass. This is accomplished by setting a fixed number of QuickPasses that can
be given out for any return time. QuickPasses will be distributed with the closest return time that is not at
capacity.

Assuming the QuickPass return times are distinct time intervals (NO overlap), it is trivial to figure
out how many QuickPasses to distribute for each return time. It is not much more difficult to decide how
many passes should be given out during overlapping intervals. Taking the number of passes that would
be distributed per distinct time interval, say N , and assuming that K QuickPass return times would be
overlapping at any time t, the number of QuickPasses that should be distributed for each return time Nk is:

Nk =
N

K

If patrons carrying live QuickPasses returned to the queue uniformly (which we do not assume), will
result in Nk people in the QuickPass queue at in the overlapping period, the exact number that will board
the ride during that time.

This results in the QuickPass queue having a reasonable upper bound at all times, creating an increase
in enjoyment for those patrons with a QuickPass. However, the number of QuickPasses distributed in a day
will be small compared to the other schemes we consider. The park will run out of QuickPasses before most
people can take advantage of them. When wait times and total rides are averaged throughout the park, this
model is expected to succeed with rough success.

3.4 A Meta-Marker: The Virtual PlaceHolder Rule

In a perfect world, a bored rider could merely ask someone else to hold their place in line. It is possible
to implement a system that does exactly that using QuickPasses. By counting the number of people entering
the Normal Queue and the active QuickPasses, we can determine when a new QuickPass user will reach the
front of the line if s/he joins the queue. This concept is more accurately illustrated in Figure 4. The return
interval, of length λ is set to force the QuickPass holder back to the queue in this manner:

Ireturn = (t + ωt − λ− δt, t + ωt − δt)

A returning QuickPass holder will arrive back to the queue δt before ωt. By treating each QuickPass as
a placeholder, when a one reaches the front of the queue, we take the first person in the QuickPass queue
and place them on the ride.
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Line Without QuickPass

Line With QuickPass

Figure 4: Depicts the role of the Virtual
Placeholder Rule that is specifically designed
to keep order in the line and bound the to-
tal number in the line. The people shaded
gray represent the people that would chose the
QuickPass option if it is available. Notice that
the QuickPass ticket is metaphorically left in
the line to signify the position reserved by the
QuickPass ticket.

4 Analysis of Results

4.1 Results from Schemes

4.1.1 Does Our Data Really Mean Anything?

The following data was collected as averages of over 100 simulations at two population setting. The Each
value is calculated as follows:

ω =
1

100
Σ(AverageDailyWaitT ime)

r =
1

100
Σ(AverageDailyRidesTotal)

ρ =
ω

r

E =
r

ω

All times are in minutes, and the final column is the amount of time the average park patron spent on
rides each day.

Observing the values in the table below, we see that regardless of a heavy or light test, the maximum
and minimum of the r value is less than one. Most people do not get to ride any additional rides! If our
total calculation for enjoyment was solely based on rides, all of our scenarios would be failures. However, the
time spent waiting in line varies enough to change our enjoyment values, making our results worth studying.

Additionally, no significant standard deviations were found on any test, so our simulation is stable enough
to use.
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4.2 Numerical Results

No QuickPasses Fixed Interval Scheme Modified Interval Scheme Virtual Placeholder Scheme Bounded Scheme

Wait time ω 206.068506 183.9429615 199.044313 149.1686935 164.7552175

Low Rides r 7.8413814 7.6820908 7.4651014 8.2205856 8.4645683

Congestion Time on Rides ρ 26.279618 23.9443875 26.66331 18.1457505 19.4641015

Enjoyment E 0.1902615 0.2088172 0.1875236 0.27554661 0.2568832

Wait time 268.8796975 190.319273 195.08904495 168.633396 182.643352

High Rides r 4.4203402 4.0690933 3.9766510 4.1362875 4.2525484

Congestion Time On Rides ρ 60.827829 46.7719115 49.058628 40.769264 42.9491535

Enjoyment E 0.0821992 0.1069018 0.1019189 0.1226414 0.1164167

To our surprise, all of our QuickPass schemes yielded results superior to our control. While this was
somewhat unexpected, each set of results must be analyzed against some of the weaknesses of the schemes
and our definition of enjoyment.

The Fixed and Variable Interval Schemes were both expected to fail. However, they both yield higher
enjoyment levels than the control. As previously discussed, some unlucky Riders were expected to be in the
QuickPass line for long periods of time. It would appear that this set of Riders is insignificant in the final
calculations, but these long QuickPass lines still do exist, and we consider them to be unreasonable result in
choosing a successful scheme. Further, the prediction that the Variable Interval Rule would have less success
than the Fixed Interval Rule held. That means that the errors in the Fixed Interval Rule carried over into
the Variable Interval Rule and were further magnified by the current errors.

The Virtual Placeholder scheme performs well against our control and the other tested schemes. This
scheme is our overall best scheme and performs best when the park is at or near peak capacity, yielding an
average queue decrease of 20 minutes per ride.

The Bounded Scheme also does well in our simulation but performs significantly better on peak capacity
days. The variance in performance based on park population is fairly predictable because this scheme reduces
the average time in line for a QuickPass user as compared with the population of non-users. On a non-peak
day, when the average time in queues for a non-user is lower, QuickPass users will have less of an advantage.
It is also worth noting that time intervals are issued a minimum of three hours in advance. If the Bounded
Solution had a minimum of zero, it may have performed better in comparison to Virtual Placeholder scheme.

5 Conclusion

Our task was to recommend a scheme for distributing QuickPasses that maximizes guest enjoyment. We
have defined enjoyment as a simple ratio of average number of rides per person over the average amount of
time spent in line. By using argument that build on each other to compensate form the lack of concrete
data, we found that:

Using a Virtual Placeholder Scheme maximizes guest enjoyment.

We also note that a Bounded scheme works admirably and can be considered as an alternative should
the Virtual Placeholder become less efficient than the Bounded scheme.

5.1 Possibilities for Future Development

• Test model with realistic data from justifiable sources One of our greatest disappointments was not
being able to test our park with realistic arrival rates.

• Tweak Schemes Each existing scheme can be modified, particularly the Bounded Scheme.

• Improve Rider Algorithms to reflect ride popularity - less popular rides should usually have a shorter
line.
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• Test Additional Potential Schemes Can we merge two schemes? Test combinations of schemes? Come
up with something new?

• Modify working schemes to try to represent the anomalies that were introduced in the question, thereby
proving that our model fully corrects those anomalies.

• Explore probability that QuickPass user returns to QuickPass queue

9



Page 10 of 10 Control 27

References

[1] Loius Wasserman, Merchandising Architecture, Wasserman, 1978.

[2] Karen Auguston Field, Design News, Feature Article, Vol. 58, Iss.1, 2003

10


