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Abstract. We will show that the Dirichlet-to-Neumann map Λ for the
electrical conductivity equation on a simply connected plane region has
an alternating property, which may be considered as a generalized maxi-
mum principle. Using this property, we will prove that the kernel, K, of

Λ satisfies a set of inequalities of the form (−1)
n(n+1)

2 det K(xi, yj) > 0.
We will show that these inequalities imply Hopf’s lemma for the con-
ductivity equation. We will also show that these inequalities imply the
alternating property of a kernel.

1. Introduction

In this paper we will derive some properties of the Dirichlet-to-Neumann
map for the electrical conductivity equation in R2. These properties are
analogs of properties which characterize the Dirichlet-to-Neumann maps for
electrical networks (see [1] and [2]). We recall some definitions. Let Ω be a
relatively compact, simply connected open set in R2 with C2 boundary. Let
γ(p) > 0 be a C2 function on Ω. Let f be a function defined on ∂Ω. Then
there is a unique function u, defined on Ω, such that

(1.1) ∇(γ∇u) = 0

and u(p) = f(p), for p ∈ ∂Ω. (Equation (1.1) is the electrical conductivity
equation and a function, u, that satisfies (1.1) is called a γ-harmonic function.)
Let ∂u

∂n(p) be the directional derivative of u in the direction of the outward
pointing unit normal n at the point p ∈ ∂Ω. Then the Dirichlet-to-Neumann
map, Λ, is defined by the formula

(1.2) Λf(p) = γ(p)
∂u

∂n
(p).

The domain of Λ may be taken to be H
1
2 (∂Ω) and the image is in H− 1

2 (∂Ω).
Λ is a pseudo-differential operator of order 1 and as such has a kernel,
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K(x, y), defined as a distribution on ∂Ω× ∂Ω. The kernel gives a represen-
tation of Λ by the formula

(1.3) Λf(x) =
∫

∂Ω
K(x, y)f(y)dy,

where x and y are arc length coordinates on ∂Ω. For the pseudo-differential
operator Λ, the kernel K is a symmetric function, K(x, y) = K(y, x), and
for a fixed x ∈ ∂Ω, limy→x |K(x, y)| = ∞. More precisely,

(1.4) K(x, y) =
k(x, y)
|x− y|2

+D(x, y),

where k is continuous on ∂Ω× ∂Ω, k(x, y) = k(y, x), k(x, x) 6= 0, and D is a
distribution supported on ∆ = {(x, x) : x ∈ ∂Ω}. (In this formula, |x− y| is
the separation in arc length of points with arc length coordinates x and y and
the continuous term in this expansion has been incorportated into the term
k(x,y)
|x−y|2 .) If x 6∈ supp(f), then the integral is an ordinary integral and there
are no convergence questions. Since we will be interested in the behaviour
of K(x, y) for x 6= y we will ignore D and will pretend that K(x, y) =
k(x,y)
|x−y|2 . The expansion (1.4) follows from Lemma 3.7 of [6] or Theorem 0.1
in [7]. The boundary, ∂Ω, is a Jordan curve and hence is homeomorphic
to a circle. Pick an orientation on ∂Ω. We say that (x1, . . . , xn; y1, · · · , yn)
is a circular pair if there are points p, q ∈ ∂Ω which divide ∂Ω into two
connected components, A,B such that {x1, . . . , xn} ⊂ A, {y1, . . . , yn} ⊂
B, and x1, . . . , xn, y1, . . . , yn are in circular order on ∂Ω. (Note that this
definition is modified from the definition in [2].) The main theorem of this
paper is the following theorem, which we prove to be equivalent to the
alternating property stated in section 2.

Theorem 1.1. Let (x1, . . . , xn; y1, · · · , yn) be a circular pair on ∂Ω. Let
L = (lij) be the n× n matrix with entries defined by lij = K(xi, yj). Then

(1.5) (−1)
n(n+1)

2 det(L) > 0

We consider this to be a generalization of a result in [2]. We will see how it
implies the classical Hopf lemma for the conductivity equation in dimension
2.

2. The Alternating Property

We first restate and prove a result of [2]. Suppose that ∂Ω = I ∪J , where
I and J are disjoint connected arcs. Then we have the following theorem.

Theorem 2.1. Let f be a smooth function on ∂Ω such that f = 0 on I.
Suppose there is a sequence of points {p1, . . . , pn} ⊂ I in circular order such
that

(2.1) (−1)i+1Λf(pi) > 0.
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Then there is a sequence of points {q1, . . . , qn} ⊂ J in circular order such
that

(2.2) (−1)nΛf(pi)f(qi) > 0.

Proof. Equation (2.2) is equivalent to

(2.3) Λf(pi)f(qn+1−i) < 0.

We first describe how to pick the point qn. Let u be the solution of (1.1)
such that u = f on ∂Ω. By (2.1) ∂u

∂n(p1) > 0. Hence there is a small open
line segment, α, such that α ⊂ Ω, p1 is one end of α and u < 0 on α. Let
W be the connected component of {z ∈ Ω : u(z) < 0} that contains α.
Suppose that W ∩ J = ∅. Then u = 0 on ∂W . But this contradicts the
maximum principle since u < 0 in W and W 6= ∅. Thus W ∩ J 6= ∅. Now
u = 0 at every point of ∂W that is in Ω. Using the maximum principle again
we see that there is a qn ∈W ∩ J such that f(qn) < 0 and there is an open
line segment β ⊂W such that qn is an end point of β. Now we can connect
the ends of α and β that are inside W by a smooth curve in W . Hence there
is a smooth curve C1 such that C1 is diffeomorphic to a line segment, has
end points points p1 and qn, and C1 − p1 − qn ⊂ W . Then u(z) < 0 for all
z ∈ C1 − p1. We can repeat this argument to produce curves Cj such that
Cj joins pj to a point qn+1−j ∈ J , Cj − pj − qn+1−j ⊂ Ω, and (−1)ju(z) < 0
for all z ∈ Cj − pj . These curves cannot intersect and by the Jordan curve
theorem the points p1, . . . , pn, q1, . . . , qn must be in circular order on ∂Ω. It
is easy to see that these points satisfy (2.3). �

We have referred to this property as the alternating property. Elsewhere
([5]) a similar property has been called the variation diminishing property.
See also section 6 of this paper.

3. The Weak Inequality

We first prove the weaker statement:

Theorem 3.1. Let (x1, . . . , xn; y1, · · · , yn) be a circular pair on ∂Ω. Let
L = (lij) be the n× n matrix with entries defined by lij = K(xi, yj). Then

(3.1) (−1)
n(n+1)

2 det(L) ≥ 0

Proof. The proof is by induction on n. We first consider n = 1. The proof
goes by contradiction. Suppose that there are points p, q ∈ ∂Ω with p 6= q
and K(p, q) > 0. Then there is an ε > 0 such that p 6∈ Dε = {y : |y− q| < ε}
and K(p, y) > 0 for y ∈ Dε. Let f(y) be a continuous function on ∂Ω such
that supp(f) ⊂ Dε = {y : |y−q| < ε}, f(q) > 0, and f(s) ≥ 0 for all s ∈ ∂Ω.
Then

γ(p)
∂u

∂n
(p) = Λf(p) =

∫
Dε

K(p, y)f(y)dy > 0,
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where u satisfies (1.1) and u(s) = f(s), s ∈ ∂Ω But then there must be
a point z near p in Ω such that u(z) < 0. This contradicts the maximum
principle.

Next we assume that the result is true for all (n − 1) × (n − 1) matrices
and prove that it is true for n × n matrices. If the result is not true, then
we have a circular pair (x1, . . . , xn; y1, · · · , yn) such that

(3.2) (−1)
n(n+1)

2 det(L) < 0.

Consider the matrix L−1 with entries (hij). Then

(3.3) hij = (−1)i+j det(Lij)
det(L)

,

where Lij is the (i, j) minor of L. By induction, (3.2), and (3.3)

(3.4) (−1)i+j+
n(n−1)

2
+

n(n+1)
2

+1hij = (−1)i+j+n+1hij ≥ 0.

Since L is nonsingular, for fixed i there must be some j for which

(3.5) (−1)i+j+n+1hij > 0.

Now let w = [1,−1, 1, . . . , (−1)n+1]T be an n-vector with alternating signs.
Let z = L−1w. Then using (3.4) and (3.5) it is easy to verify that

(3.6) (−1)i+nzi > 0.

To summarize, we have a vector z such that

(3.7) (−1)i+1 = wi =
n∑

j=1

K(xi, yj)zj

and

(3.8) (−1)n+1ziwi > 0.

Now, choose small intervals Dj around the points yj such that the Dj are
disjoint and do not contain any of the points xi. Choose the Dj so small
that

(3.9) |K(xi, y)−K(xi, yj)| < ε, y ∈ Dj , i = 1, . . . , n.

Also choose functions fj such that

(3.10) supp(fj) ⊂ Dj , zjfj(y) ≥ 0, and
∫

Dj

fj = zj .
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Let f =
∑
fj . Then

|Λf(xi)− wi| = |
∫

∂Ω
K(xi, y)f(y)dy −

n∑
j=1

K(xi, yj)zj |

= |
∫

∂Ω
(K(xi, y)−K(xi, yj))f(y)dy|

≤ ε
n∑

j=1

|zi|.

(3.11)

Thus we conclude that for ε small enough Λf(xi) has the same sign as wi.
By the alternating property, there would have to be a set of n points ti in
circular order such that

(3.12) (−1)nwif(ti) > 0.

For such a set of points we would have to have ti ∈ Di and hence f(ti) would
have the same signs as zi. This contradicts (3.8).

�

4. The Strong Inequality

We now prove Theorem (1.1). We consider the cases n = 1 and n > 1
separately. Let us assume the arc length of ∂Ω is S and that points on ∂Ω
are parametrized by the numbers in the interval [0, S). When n = 1, suppose
there is a pair of points x1, y1 with 0 ≤ x1 < y1 and K(x1, y1) = 0. By (1.4)
there is no sequence of points zj such that x1 < zj < y1, limj→∞ zj = x1,
and limj→∞K(x1, zj) = 0. Hence there is a point η2 with x1 < η2 < y1 such
that

K(x1, η2) = 0, and K(x1, η) < 0, for x1 < η < η2.

Let x be any number such that x1 < x < η2 and choose η1 so that x < η1 <
η2. Then (x1, x; η1, η2) is a circular pair and hence

(4.1)
∣∣∣∣K(x1, η1) K(x1, η2)
K(x, η1) K(x, η2)

∣∣∣∣ ≤ 0.

Since
K(x1, η2) = 0, K(x, η2) ≤ 0, and K(x1, η1) < 0,

it follows that

(4.2) K(x, η2) = 0.

This shows that for all x, with x1 < x < η2, K(x, η2) = 0. Hence we get the
contradiction that limx→η2 K(x, η2) = 0.

The proof for n > 1, makes use of the following result in [2]. It was later
pointed out to us that Charles Dodgson (Lewis Carroll) used a version of
this identity in [4]. Let (x1, . . . , xn; y1, . . . , yn) be a circular pair. We assume
that the coordinates on ∂Ω are chosen so that 0 ≤ x1 < · · · < xn < y1 <
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· · · < yn < S. Let L be the matrix with i, j entry equal to K(xi, yj). We
will use the notation

(4.3) κ(x1, . . . , xn; y1, . . . , yn) = det(L).

Lemma 4.1. Let (a1, . . . , an+1; b1, . . . , bn+1) be a circular pair. Then

(4.4) κ(a1, . . . , an+1; b1, . . . , bn+1)κ(a1, . . . , an−1; b3, . . . , bn+1) =

κ(a1, . . . , an; b1, b3, . . . , bn+1)κ(a1, . . . , an−1, an+1; b2, . . . , bn+1)

− κ(a1, . . . , an; b2, . . . , bn+1)κ(a1, . . . , an−1, an+1; b1, b3, . . . , bn+1)

Assume that

(4.5) κ(x1, . . . , xn; y1, . . . , yn) = 0

for some circular pair. First we claim that there is no sequence of points zj
such that xn < zj < y1, limj→∞ zj = xn, and limj→∞ κ(x1, . . . , xn; zj , y2, . . . , yn) =
0. For this would imply that there are constants ck (independent of j) so
that

(4.6) K(xn, zj) =
∑
k<n

ckK(xk, zj),

and hence

(4.7) lim
j→∞

K(xn, zj) =
∑
k<n

ckK(xk, xn),

contradicting (1.4). Thus there is a number η1 with xn < η1 < y1 such that

(4.8) κ(x1, . . . , xn; η1, y2, . . . , yn) = 0 and

(4.9) κ(x1, . . . , xn; η, y2, . . . , yn) 6= 0, for xn < η < η1.

Let x be such that xn < x < η1. Then there is an η such that x < η < η1

and hence (x1, . . . , xn, x; η, η1, y2, . . . , yn) is a circular pair. By (4.4), (4.5),
and (3.1)

(4.10) 0 ≥ κ(x1, . . . , xn, x; η, η1, y2, . . . , yn)κ(x1, . . . , xn−1; y2, . . . , yn) =

κ(x1, . . . , xn; η, y2, . . . , yn)κ(x1, . . . , xn−1, x; η1, y2, . . . , yn)

− κ(x1, . . . , xn; η1, y2, . . . , yn)κ(x1, . . . , xn−1, x; η, y2, . . . , yn)

= κ(x1, . . . , xn; η, y2, . . . , yn)κ(x1, . . . , xn−1, x; η1, y2, . . . , yn) ≥ 0.

Using this and (4.9) we see that

(4.11) κ(x1, . . . , xn−1, x; η1, y2, . . . , yn) = 0, for xn < x < η1.

As above, this contradicts (1.4) and proves the theorem.
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5. The Hopf Lemma

We now show how the fact that K(x, y) < 0 for x 6= y implies the Hopf
lemma (reference) for the conductivity equation.

Theorem 5.1. Let u be a non constant solution of ∇(γ∇u) = 0, and let
p ∈ ∂Ω be a point where u assumes a minimum. Then

(5.1)
∂u

∂n
(p) < 0

Proof. We may assume that u(p) = 0. Let f = u|∂Ω. Since u is not constant,
supp(f) is not empty. Thus there is an interval D around p in ∂Ω such that
supp(f) − D is not empty. Let ψ be a smooth function on ∂Ω such that
ψ = 1 on supp(f)−D, ψ = 0 on an interval around p, and 0 ≤ ψ ≤ 1. Let
g = ψf and let v be the solution of ∇(γ∇v) = 0 with v|∂Ω = g. Since f ≥ g
it follows that u ≥ v. It is also true that g ≥ 0. Since p 6∈ supp(g) and
K(p, y) < 0,

(5.2) 0 >
∫

∂Ω
K(p, y)g(y)dy = γ(p)

∂v

∂n
(p) ≥ γ(p)

∂u

∂n
(p),

which proves the theorem. �

6. The Variation Diminishing Property

We will use the following notation. Let M(x, y) be a continuous function
on [c, d]×[a, b]. Let c ≤ x1 < x2 < · · · < xn ≤ d, a ≤ y1 < y2 < · · · < yn ≤ b.
Let T be the n× n matrix with i, j entry equal to M(xi, yj). Let

µ(x1, x2, . . . , xn; y1, y2, . . . , yn) = det(T ).

The following lemma from [5] is sometimes paraphrased by saying that the
kernel M has the variation diminishing property. It will be used to show
that the inequalities (1.5) imply the alternating property.

Lemma 6.1. Let f be a continuous, not identically 0, function defined on
the interval [a, b], such that f changes its sign on this interval no more than
n − 1 times. Let M(x, y), x, y ∈ [c, d] × [a, b], be a continuous kernel with
the property that

(6.1) µ(x1, x2, . . . , xn; y1, y2, . . . , yn) > 0,

whenever c ≤ x1 < x2 < · · · < xn ≤ d, a ≤ y1 < y2 < · · · < yn ≤ b. Then
the function

g(x) =
∫ b

a
M(x, y)f(y)dy

vanishes in [c, d] no more than n− 1 times.

By saying that function f changes its sign k times on the interval [a, b]
we mean that there are k+ 1 points x1 < x2 < · · · < xk+1 in [a, b] such that
for i = 1, 2, . . . , k

(6.2) f(xi)f(xi+1) < 0.
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Proof. By hypothesis there are points a = s0 < s1 < s2 < · · · < sn−1 <
sn = b such that in each interval (si−1, si), i = 1, 2, . . . , n function f does
not change its sign and is not identically 0. For i = 1, 2, . . . , n let

(6.3) gi(x) =
∫ si

si−1

M(x, y)f(y)dy.

Then

(6.4) g(x) =
n∑

i=1

gi(x).

For any c ≤ x1 < x2 < · · · < xn ≤ d the determinant
(6.5)

det({gi(xj}) =
∫ sn

sn−1

. . .

∫ s1

s0

µ(x1, x2, . . . , xn; y1, y2, . . . , yn)f(y1) . . . f(yn)dy1 . . . dyn

is not 0 since the integrand is not identically zero and has constant sign.
This shows that there is no non-trivial linear combination of gi’s vanishing
at n points and hence that g(x) =

∑n
i=1 gi(x) cannot vanish at n points. �

We note that this proof only used the fact that µ(x1, x2, . . . , xn; y1, y2, . . . , yn)
has constant sign. We need one more lemma before coming to the proof of
the alternating principal.

Let K(x, y) be a kernel on ∂Ω×∂Ω. We assume that K(x, y) is continuous
when x 6= y, but we don’t assume anything about K on the diagonal of
∂Ω× ∂Ω. Let κ(x1, . . . , xn; y1, . . . , yn) be defined as in section 4.

Lemma 6.2. Suppose that κ(x1, . . . , xn; y1, . . . , yn) is never zero and has
constant sign for all circular n-pairs (x1, . . . , xn; y1, . . . , yn). Let ∂Ω = I ∪J
where I and J are disjoint connected arcs. Let f be a continuous function
on ∂Ω with supp(f) ⊂ J . Let

(6.6) g(x) =
∫

∂Ω
K(x, y)f(y)dy.

Then if there is a sequence of n+ 1 points in I in circular order at which g
alternates in sign, then there is a sequence of at least n + 1 points in J in
circular order at which f alternates in sign.

Proof. If there is no sequence of n + 1 points of J at which f alternates in
sign, then f can change its sign no more than n− 1 times in J . By Lemma
6.1, g can vanish no more than n− 1 times in I. But we are assuming that
g has n + 1 alternations of sign in I and hence at least n zeros in I. This
contradiction proves the lemma. �

We now state and prove the theorem.

Theorem 6.1. Using the notation of Lemma 6.2, suppose that

(6.7) (−1)
n(n+1)

2 κ(x1, . . . , xn; y1, . . . , yn) > 0
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for all n > 0 and all circular n-pairs (x1, . . . , xn; y1, . . . , yn). Let f be a
continuous function on ∂Ω with supp(f) ⊂ J . Let

(6.8) g(x) =
∫

∂Ω
K(x, y)f(y)dy.

Suppose there is a sequence of points {p1, . . . , pn} ⊂ I in circular order such
that

(6.9) (−1)i+1g(pi) > 0

Then there is a sequence of points {q1, . . . , qn} ⊂ J in circular order such
that

(6.10) (−1)ng(pi)f(qi) > 0.

Proof. By Lemma 6.2 there is a sequence of points in J at which f alternates
in sign. If there is no sequence with the desired alteration property then J
is a disjoint union of subintervals Ji, in circular order, such that

(1) f is not identically 0 on Ji, i = 1, . . . , n,
(2) f does not change its sign on Ji, i = 1, . . . , n
(3) for some zi ∈ Ji,

(6.11) (−1)n+if(zi) > 0.

We use the idea of Lemma 6.1. For i = 1, 2, . . . , n let

(6.12) gi(x) =
∫

Ji

K(x, y)f(y)dy.

Then

(6.13) g(x) =
n∑

i=1

gi(x).

Let

(6.14) G =


g1(x1) g2(x1) . . . gn(x1)
g1(x2) . . . gn(x2)

...
...

g1(xn) . . . gn(xn)

 .
Let u be the n-vector with ui = 1, i = 1, . . . , n. Then

(6.15) Gu =


g(x1)
g(x2)

...
g(xn)

 .
Using (6.11) we will show that the signs of u are all negative. This contra-
diction will prove the theorem. We need to compute the signs of the entries
of G−1. Rather than get lost in a cloud of indices, we will give the proof
in the case that n = 3 and leave the general proof to the reader. In this
case the assumption (6.11) implies that f(y) ≥ 0 in J1, f(y) ≤ 0 in J2, and
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f(y) ≥ 0 in J3. As in section 3 we compute the signs of the cofactors of G.
First we have
(6.16)

det(G) =
∫

J1

∫
J2

∫
J3

κ(x1, x2, x3; y1, y2, y3)f(y1)f(y2)f(y3)dy1dy2dy3 < 0.

We find that

(6.17)
∣∣∣∣g2(x2) g3(x2)
g2(x3) g3(x3)

∣∣∣∣ =
∫

J2

∫
J3

κ(x2, x3; y2, y3)f(y2)f(y3)dy2dy3 > 0.

Hence (G−1)11 < 0. Next we compute that
(6.18)

(−1)1+2

∣∣∣∣g1(x2) g3(x2)
g1(x3) g3(x3)

∣∣∣∣ =
∫

J1

∫
J3

κ(x2, x3; y1, y3)f(y1)f(y3)dy1dy3 > 0,

and thus (G−1)21 < 0. Continuing the calculation we find that the signs of
G−1 are as follows

(6.19) G−1 =

− + −
− + −
− + −

 .
This yields the contradiction

(6.20)

− + −
− + −
− + −

+
−
+

 =

1
1
1

 .
�

7. Remarks and Conjectures

We have not tried to state the most general hypotheses under which our
results are valid, but have stated them in such a way that the essential
ideas of the proofs are clear. We can also prove determinant inequalities for
for certain “blocks” in Dirichlet-to-Neumann kernels for multiply connected
plane domains. We can differentiate our inequalities to get a set of in-
equalities involving determinants of derivatives of the Dirichlet-to-Neumann
kernel. These inequalities are equivalent to the set of inequalities (1.5). In
our arguments we seem to need to assume that γ is in C2(Ω), however it is
possible that weaker assumptions would suffice.

We would like to single out the following conjecture on characterizing the
kernel of a Dirichlet-to-Neumann map.

Conjecture 7.1. Let Ω be a relatively compact, simply connected region in
the plane with C2 boundary. Let K(x, y) = k(x,y)

|x−y|2 , where (x, y) ∈ ∂Ω×∂Ω−
∆, k is continuous on ∂Ω × ∂Ω, k(x, x) 6= 0, and K satisfies (1.5). Then
there is a distribution D(x, y) on ∂Ω × ∂Ω, supported on the diagonal, ∆,
and a regularization of K as a distribution on ∂Ω× ∂Ω, so that L = K +D



KERNEL OF THE DIRICHLET-TO-NEUMANN MAP 11

is the kernel of the Dirichlet-to-Neumann map for some conductivity, γ, on
Ω. The distribution D is determined by the property that

(7.1)
∫

∂Ω
L(x, y)dy = 0.

Equation (7.1) is analogous to the fact the the Dirichlet-to-Neumann ma-
trix for an electrical network has row sums equal to zero. This implies that
the diagonal is determined by the off-diagonal terms. This is true as well in
the continuous case.

We have discussed these results with many people and their suggestions
and advice have been of great benefit. Among these people are Ed Curtis,
John Sylvester, and Gunther Uhlmann. The importance of the alternating
property was recognized some time ago by Ed Curtis.
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