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Abstract

In this paper we show that the resistors in a rectangular network
can be determined by measurements at the boundary of the voltages
generated by imposed currents. We also give an algorithm for using
the boundary measurements to compute the resistances.
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1 Introduction

We consider a rectangular network of resistors in the plane. Let Z* be the
lattice in R? consisting of the points with integer coordinates. Two lattice
points p and ¢ are said to be adjacent if there is a horizontal or vertical segment
of length one joining them. (The points p and ¢ will also be called neighbors,
and the line segment joining them will be called pq.) Suppose given integers
(a,b) with a < b, and (¢, d) with ¢ < d. A rectangular network Q is constructed
as follows. The nodes of § are the lattice points p = (7, j) for which a <1 <
b and ¢ < j < d, with the four corner points (a,c),(b,c),(a,d) and (b,d)
excluded. The set of nodes will be denoted €. For each lattice point p, the
set of four adjacent lattice points will be called N (p). The interior int Qg of
Qo consists of those nodes p all of whose neighbors are in Qy. The boundary
00 is Qg - int Q. Every boundary node p has exactly one neighbor in €,
which is an interior node. An edge of 2 is the horizontal and vertical line
segment ¢ = pg which connects a pair of adjacent nodes p and ¢ in int Qg,
or which connects a boundary node p to its adjacent interior node ¢. The set
of edges will be denoted ;. Figure 1.1 shows a network with 49 edges, 20

interior nodes and 18 boundary nodes.

Figure 1.1

A network of resistors I' = (Qo, Q1,7) is a network = (Qo, ;) together
with a function 4 : ©; — R* where R is the set of positive real numbers.

For each edge o = pq in Q, the number v(o) is called the conductance of o, and



1/~(o) is the resistance of o. The function v on §; is called the conductivity.
For any function f: Qo — R, we define a function L, f : int Q3 — R by

Lyf(p) = > ~(pa)(f(q) — f(p))

7€EN(p)
A function f : Qo — R which satisfies L. f(p) = 0 for all interior nodes will
be called y-harmonic. If voltage ¢(r) is applied at each boundary node r, the
network € will acquire a unique voltage f(p) at every interior node p according
to Kirkhoff’s Law, which states that for each interior node p, L. f(p) = 0. (See
Section 2.) The function ¢ defined on the boundary nodes determines a current
1,(r) through each boundary node r, by I4(r) = v(rq)(f(r) — f(q)), where ¢ is
the unique neighbor of r in int . For each conductivity v, a quadratic form
()., 1s defined as follows. For two boundary functions % and ¢,
Qy(1,0) = > (r)y(r)
redfly

The main result of this paper (Theorem 3.2) is the solution of the inverse
conductivity problem for a network of resistors: 7 is uniquely determined by
the quadratic form Q.. Suppose that Q@ = (o, ) is a network with m
boundary nodes. Let F' be the space of quadratic forms on R™. Let T' be
the map from from conductivities on Q4 to F' defined by T'(y) = Q-(, ). We
calculate the differential d7" and show that 7" is an embedding of the space of

conductivities onto a submanifold of F'.

Remark 1 Our approach gives a direct method for calculating the conductiv-

ity of each resistor in the network.

Remark 2 For the sake of clarity in this paper we have given the proofs for
networks in the plane. Similar methods apply to all dimensions higher than

two.

Remark 3 The restriction to rectangular networks is also unnecessary. The
main results (e.g. Theorems 3.2 and 5.1) are true for general finite subnetworks

of the integer lattice of Z". (See the end of Section 3.)

Remark 4 The argument for the calculation of the differential d7" follows the
pattern originally given by A. Calderon [3].
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Remark 5 We have benefitted from discussions with G. Uhlmann and J.
Sylvester, who introduced us to inverse problems associated with the con-
ductivity equation Div(yGrad(u)) = 0. For the conductivity equation (in
dimension at least three), they proved the uniqueness in [6]. The continuity

of the inverse was shown by Allessandrini in [2].

2 Preliminaries

In this section, we establish some facts about ~-harmonic functions.

Lemma 2.1 Let f be a v-harmonic function on Q, and let p be an interior

node. Then either f(p) = f(q) for all nodes q € N(p) or else there is al least
one node q € N(p) for which f(p) > f(q) and there is al least one node

g2 € N(p) for which f(p) < f(q2) -
Proof: By 1.1,
{2 v} () = > A(pa)f(a)

7€EN(p) 7€EN(p)
That is, f(p) is the weighted average of its neighbors, with positive weights.

If the value of f at some neighbor is less than f(p), then the value at some
other neighbor is greater than f(p). QED

Corollary 2.2 Let f be a v-harmonic function on Qg. Then the mazimum

and minimum values of f occur on the boundary of €.

Proof: Suppose that the maximum value occurs at py € int 0y, and that
f(po) > flq) for every ¢ € 0. Let {po,p1,...,pn} be a sequence of nodes
in g such that each p;p;41 is an edge in ©Q; and p, € Q. Then let ;7 be
the first index for which f(p;) < f(po) . Then f(pj—1) = f(po) > f(q) for
all ¢ € N(p;j_1) and f(pj—1) > f(p;). This would contradict Lemma 2.1.
Similarly for the minimum. QED.

Corollary 2.3 Let [ : Qo — R, be a function such that L. f(p) = 0 for all
p € int Qo, and f(p) =0 for all p € 0Qy. Then f(p) =0 for all p.

Proof: Immediate from Corollary 2.2.



Proposition 2.4 Let functions h : int Qo — R, and ¢ : 09 — R be given.
Then there is a unique function f : Qo — R such that L. f(p) = h(p) for all
p € int Qo, and f(p) = &(p) for all p € 0.

Proof: Consider the square system of linear equations for unknowns f(p):
Lyf(p) = h(p) for p € int Qo

f(p) = ¢(p) for p € int 99,

This system of equations has a unique solution since
L.f(p)=0 forpeint

f(p) =0 for p € int 0
has zero as its unique solution, by Corollary 2.3.

We need a discrete version of Green’s Formula. Let (po, p1,...,ps) be the

nodes along a horizontal (or vertical) line in 4 as in Figure 2.1.

Po P1 P2 P3 Pn .
o o o o o o Figure 2.1

Lemma 2.5 Let Vj be the collection of nodes p;, and let Fy be the collection
of edges p;pir1. Let f and g be two functions f,g : Vo — R and let v be a
function v : Fy — R. Let fi = f(pi), g: = g(pi), and v; = v(pipis1). Then

g:%(fi-}-l — fi)gi+1 —g1)) = Y9 (fo— f1)
—g1[v(fo— fi) +n(fe — i)

—gn(fi — f2) + 72(fs — f2)]
+- ’Yn—lgn(fn - fn—l)

Proof: Rearrange the terms. QED



Notation Henceforth, let the nodes in € be indexed p;. For a function
f:Q — R, let f; = f(p:i). For a function v : Q; — R, let v;; = ~v(0y;) for
each edge o;; = pip; € 1. For each boundary node p;, let e; be the unique

edge connecting it to its adjacent interior node denoted nb(p;).

Proposition 2.6 (Discrete Green’s Formula) Let Q = (Qq, () be a network,
and let v :Qy — R and f,g: Qo — R be functions. Then

Yo vilfi=fgi—g) = Y giv(e)(f(pi) — f(nb(p:)))

i €EQ pi€9Q0

— > gl f(pi)

pi€int g
Proof: Use Lemma 2.5 and compute the sum on the left by first summing
horizontally and then vertically.

Corollary 2.7 If I' = (Qo,Q4,7) is a network of resistors and f and g are
~v-harmonic functions on Qg with g = ¥ and f = ¢ on 08y, then

Q4(h,0) = D ¥(p)ls(p)

pPEIQ

= Y viilfi— i)gi—gi)
oi5€8

= > dp)lu(p)
PEIQ

= QW(¢7 771})

where the above notation is used.

Proof: Immediate from Proposition 2.6, using L,(f) = 0 and L.(g) = 0.
QED

We will use a process which we call harmonic continuation. Let I' =
(Q0, 01, 7) be a network of resistors, and let the columns of Qy be Cy, Cy, ..., C,,
numbering from left to right. Let S be the subset of 2y consisting of the nodes
in columns Cy, Cy, ..., Cg. Suppose that f is is a function defined on S which

is y-harmonic on the nodes which are interior in S.



Lemma 2.8 In this situation f can be defined on Cyyq, so that f is harmonic
on the larger set. The definition of f is uniquely determined on the interior

nodes of Cry1, and can be given arbitrary values on the endnodes of column

Ck+1 .

Proof: First notice that the definition of f on the nodes of column Cji4
will not affect the assumed harmonicity of f at any of the nodes in columns
Co,C1,...,Cr_1. We consider a node p in column C}, with its four neighbors

q; , as in Figure 2.2.

® ® ® ® ®

. 43 -

. q1 p q4 .

. 92 . Figure 2.2
[ J [ J [ J [ J o

C() 01 Ok Ok+ 1 On

Kirkhoft’s Law implies that we must have

{ > v () = Y v(pa)f(q)

qEN(p) q€N(p)

If ¢ is an interior node of Cyy1, then f(q) is determined by the values to the
left. In Figure 2.2, f(q4) is determined by f(p), f(q1), f(g2) and f(gs). The

values f on the two boundary nodes of Cy11 can be assigned arbitrarily. QED



Harmonic continuation is also valid to the left, up or down. Note that
although the values of f on the boundary nodes of C} are arbitrary, these
values affect the next step of the continuation. Consider Figure 2.3, where the

dotted line is the diagonal of slope -1 passing through the top node of C}.

[ ]
[ ]

[ ]
[ ]

Figure 2.3

[ ]
Co Cvy  Citr Cy

Lemma 2.9 Let I' = (Qo, Q1,7) be a network of resistors. Suppose a function
f is defined and constant on the nodes of columns Cy, Cy,...,Cy. Then [ can
be continued as a vy-harmonic function where f is constant on or below the
diagonal indicated by the dotted line. The values of f at boundary nodes at the

tops of columns Cyyq,...C, are arbitrary.
Proof: Immediate from Lemma 2.8. QED

This shows that it is possible for a y-harmonic function to be locally con-
stant, without being constant throughout €. This is in contrast to the contin-
uous case, where a harmonic function which is constant on an open set must

be identically constant.

We need some facts (well-known) about the discrete Neumann problem.

Let f be a real function defined on Q¢ with L,f = 0. Let ¢ = f|sq, and
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I,(p) = v(pq)[f(p) — f(nb(p))] where nb(p) is the unique neighbor of p in
int 9. Then we have the following.

Lemma 2.10 Suppose L. f(p) =0 for p € int Qo and I4(r) =0 for r € 9.
Then there is a ¢ € R in such that f(p) = ¢ for all p € Q.

Proof: Since L,f =0,

Q- (6. 0) = > vij(fi— 1) = D d(p)ls(p) (1)

o € pEHN

Since I4(p) = 0 for p € Ny, Q,(d,¢) = 0. Thus f(p;) = f(p;) for all
Suppose values {.J,} are given; consider the system of equations (one equa-

tion for each node in Qy):
L,f(p) = 0, for p € intQy
vpo)lf(q) — f(p)] = —Jp, for p € 09, q = nb(p) (2)

The unknowns are the values of f.

Lemma 2.11 This system of equations has a solution if and only if
S 7, =0
pEIQ
If f and g are two solutions then f — g is constant.

Proof: (This is an application of the Fredholm alternative to the discrete
situation). Let B, be the matrix of the system of equations (3) and let e =
[1,1,...,1] € R", where n is the number of nodes. Then it is easy to see that

e-B,=0 (3)

By Lemma 2.10, ker(B,) = {c- e’ : ¢ € R}. By (4) the range of B, is
orthogonal to the kernel of B, (B, is a square matrix). Since dim(ker(B,))
=1, B, maps onto {b: e-b=0}. Since }_ .50, J, = 0, there is a solution of
(3). By Lemma 2.10, it is unique up to a constant. QED



3 Global uniqueness

Let @ = (Q0,84) be a rectangular network with N edges and m boundary
nodes. We show that the map T from (R*)" to the space F of quadratic
forms on R™ is 1 — 1. Observe that

Yo b lu(p) = Qy(,0)

Py ESQO

= SlQ6 0.0+ )~ Qu(6.9) — Q00 ()

Thus knowing @~ (¢, ¢) for all ¢ is equivalent to knowing the Dirichlet to
Neumann map A, (or its inverse the Neumann to Dirichlet map). A, maps the
boundary value function ¢(p), p € 9 to the current function I4(p), p € 9y
which is determined by the solution to the Dirichlet problem with boundary
values ¢. (The boundary values and boundary currents are dually paired by
equation (5)). In this sense we show that measurements at the boundary

determine ~.

At each corner of the rectangular network there are two edges, each con-
taining a boundary node. We first show how to determine the conductances

of these edges.
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Figure 3.1

Referring to Figure 3.1, we want to compute the conductances y(og) and
v(o1). Consider the following Neumann problem. The current is set equal
to 0 at all boundary nodes except at the corner pair, where the current is
1 at node g9 and -1 at node ¢;. To uniquely determine the solution, the
voltage is set equal to 0 at the boundary node py at the top left. By Lemma
2.9 we know that there is a (unique) y-harmonic function with values zero
everywhere except in the upper right corner. This is also the solution of
the Neumann problem we have just posed which is unique by Lemma 2.11.
Thus by measuring the voltages f(qo) and f(q1), we know the conductances
Y(o0) = f(q)™" and v(o1) = —f(q1)~" of these edges. Referring to Figure
3.2, consider the conductances of each edge within the strip bounded by the
diagonal lines (dotted) of slope -1.
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Po e q1

q2

Gk Figure 3.2

Assume inductively that we know the conductances of each edge above the
diagonal from p; to ¢z. By Lemma 2.9 there is a y-harmonic function & such
that h is 0 on and below the lower diagonal, has current 1 at the node p;, and
has current 0 at all other exterior nodes except at nodes ¢; for j = 1,... k.

Suppose the current at ¢; is —a;.

Lemma 3.1 The numbers aq, ..., ap are uniquely determined by the conditions
on the currents at the other exterior nodes and the condition that h have the

same value at all boundary nodes on the left side.
Proof: This follows from Lemma 2.9. QED

For each y =1,2,... K, let h; be the solution of the Neumann problem:

In(q) = 0,ifq# p1,q;

Ly(m) = 1

In(q;) = —1

hj(po) = 0 (5)
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Then Zle ajh; solves the same Neumann problem as i and thus

k
> ajh;=h (6)
7=1

Now we find {ai,...,ar}. We know that (6) has a unique solution. We also
know that if

Zk:a]‘ = 1
; a;hi(q) =0 (7)

for all ¢ which are boundary nodes of the left column, then (7) holds by Lemma
3.1. Hence the (sometimes) overdetermined system (8) has a unique solution
{a1,...,ax}. Thus by using the solutions of the Neumann problems (6) and
by solving (8) we can find the function h. We now have a y-harmonic function
h with known values and currents at all boundary nodes. The values of  are
in fact 0 at all nodes on and to the left of the lower of the two dotted diagonals.
Moreover the values of h are also known at all neighbors of boundary nodes
since these values are either known to be zero or can be computed from known
conductances, currents, and boundary values. By using Kirkhoff’s Law and
known conductances we find the values of & at all remaining nodes. We will
use the function ~ and the inductively known conductances above the diagonal

to compute the conductances within the diagonal strip.
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Figure 3.3

..7-1

In Figure (3.3) the letters 7; stand for the conductances of resistors in the
diagonal strip. The letters p; stand for the nodes in this strip. We first
compute the conductance 7 from the known current through from p; to py (it
is 1) and the voltage drop from p; to py (it is the value of h at p;). We next
use Kirkhoff’s law at p; to compute 7. (Three currents are known and the
voltages at py and p3 are known.) We can then compute 73 by using Kirkhoff’s
law at ps and the known voltages and conductances. We continue until we
finally compute 7 (I = 2k). By going to the right, left, up or down, we can
inductively find the conductance of each resistor in the network. We have thus

proved the following.
Theorem 3.2 T is 1 — 1. That is, if 1 # 72 then @, # Q,.

The proof of Theorem 3.2 describes a direct algorithm for calculating
from the Neumann to Dirichlet map. There is a similar direct algorithm for

calculating v from the Dirichlet to Neumann map.

We now give a justification of Remark 3 of Section 1. Let © = (Qg, ) be

a general network of the following form. 2; is a finite set of edges pg where
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p,q are points in the integer lattice Z2? and [p —q| = 1; Qo = {p € Z? :
pq € y for some g}. We take the same definition of interior and boundary:
int Qg = {p € Qo: N(p) C Qo}; 0% = Qo— int Q. A node p € 90y may
have one, two, or three neighbors in y. As before, a conductivity function is
a function v from ©; to R*, and a resistor network is a triple (£29,Q4,v). In
this context if ¢ is a boundary potential, and f is the harmonic function with
boundary values ¢, the current at a boundary node p € 9€g is now be defined

as

Lip)=Y_ ~pa)lf(p) — f(q)]

gE€N (p)NSo
It is straightforward to verify most of the previous results for such a network,
but for the proof of Theorem 3.2 in this general setting, we need Proposition
3.3 below.

Let I' = (Q0,4,7) be a general resistor network, as above, with conduc-
tivity function v. Adjoin edges to ) to produce a rectangular network. Make
this enlarged network into a resistor network (Wy, Wi, u) by setting u equal
to 1 on the adjoined edges.

Propostion 3.3 A, determines A,,.

Proof: Let ¢ be given on dW,. We show how to compute A,¢. Let {p1,...,pr}
be the boundary nodes of €. If u is a function defined on 9y A, is regarded
as a matrix acting on the vector [u(p;),...,u(ps)]” so that A u is the vector

of currents through {p;,...,pr}. Consider the following set of equations.
L.f(p) = 0forpée€int Wy—Qq (8)
ML)y f)]T = [ (pa)s- e, J(pi)]" for p; € 990 (9)

where f|0Wy = ¢. In this set of equations, when p € 9Qg N intWy, we define

Jip) = >, wpa)lf(q) — f(p)]

qEN (p)—Qo

= > @ fp)

qEN (p)—Q0

(The second equality holds since u(pg) = 1 if pg € Wi — Q;.) The unknown
terms in (9) and (10) are the values f(p) for p € int Wy — int Qq, and J(p) for
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p € 0Q9NAIW,. The number of unknowns equals the number of equations. We
now show that this system has a unique solution. We know from Proposition

2.4 that there is a unique solution of the Dirichlet problem:
L,h =0, h|OWy = ¢ (10)

This function A will be used to find a solution of (9) and (10). For p €
INeNIWy set J(p) = p(pq)[h(p)—h(nb(p))] where nb(p) is the unique neighbor
of p in Wy, and set f(p) = h(p) for p € int Wy — int Q. This gives a solution
of (9) and (10). This is the only possible solution of (9) and (10), since a
different solution of (9) and (10) would lead to a different solution of the the
Dirichlet problem (11). Thus we know that the system (9) and (10) has a

unique solution. Then A, is given by
Aud(p) = J(p), if p € 09 N IWy (11)
Aud(p) = fp) = [(nb(p)), 1f p € OW, — 0% (12)
where f and .J are the solutions of (9) and (10). QED

Corollary 3.4 For a general network of resistors, the conductivity v is uniquely
determined by A.,.

Proof: This follows from from Proposition 3.3 and Theorem 3.2. QED

4 The differential of T

For the computation of the differential we consider T'(y + k) for a small per-
turbation k. For any function « : 3 — R, the norm of a is ||a| = max |a(0)]
for o € 5. Fix a conductivity v, and consider a perturbation v + k where |||

is small. Consider the solutions of
Lytxu(p) =0 (13)

for values u(p) for p € int Qg , and where the values of u(p) = ¢(p) for p € 9.
Let u = f 4 g, where f = ¢ on 99y and L,f = 0 in int Q5. Then g = 0 on
00, and (14) implies that:

(Ly 4+ Le)g = —Lyf (14)
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in int Qg. If & is given, L;lh is defined to be the solution v of L,v = h with
v = 0 on 9€Q. By Proposition 2.4, this makes sense. In the present context,
this implies that
Lw_leg =g
since g = 0 on 9. Equation (15) yields
(I 4+ L;"L)g ==L Lef

in int Qq. L.f is linear in k at all nodes in int 5. Hence —L;lLﬁf is linear

in £. Moreover if ||| is small, then I 4+ L7'L, is invertible on those g with

g(p) = 0 on 99Qy. Also
—([ ‘|‘ L;lLH)_lL;lLﬁf = O(/{) (15)
That is, g vanishes to order 1 in k. We have

QP d) = > (vij+ri)fi— fi+9i—95)°

Ui]EQI
= Q) +2 Y vii(fi = [i)gi — i) +
Ui]EQI
2 E sz] f f] g] —I_ Z 721 —I_
O'UEQl C’UEQI
E ki (fi — f] + Z Kij(gi —
Ui]EQI UUEQI

By Proposition 2.6, since L, f =0, and g = 0 on €y, we have

o vilfi— fi)gi—gi) =0

T3y e
By equation (16)

2 ) wilfi—f)gi—g)+ D0 viilgi—gi)’+ Y rilg

ULJEQI ULJEQI Ui]EQI
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Thus,

Quan(d:0) = Qy(6,0) + D rkij(fi = fi)* + O(x?) (16)

T3y e

This proves the following. Recall that the space of quadratic forms on R™ is
denoted F.

Theorem 4.1 The map T : (R*)N — F is differentiable. The differential at
v € (RT)N as a linear function of k € RN is given by the quadratic form

dT,k(d, ) = > kij(fi — [i)(gi — 95)

T3y S5
where [ and g are y-harmonic functions on Qqg, with flasq, = ¢, and glag, = V.

Theorem 4.2 Let I' = (20, Q4,7) be a network of resistors. Suppose given
any function k : Q1 — R and suppose that for all v-harmonic f and g functions

> wii(fi— fi)lgi—g;) =0

T35 e

Then k(o) = 0 for all o € Q. Hence the differential dT : RN — R™ is one
to one.

Proof: We order the edges (from the outside in) as follows. First every node
is assigned a level by level(p) = min|p — r|, where r is a boundary node. The
nodes of a fixed level form the sides of a rectangle in ). In the notation for
an edge o = pq, it will be assumed that level(p) < level(q). Each edge o = pq
is assigned a level by level(pq) = level(p) + level(q). The edges are partially
ordered by level. By ordering the edges arbitrarily within each level, we obtain
a total ordering of the edges. There are two types of edges, those whose level

is odd, and those whose level is even.
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Let 0 = pg € 1, be an edge of level one as indicated in Figure 4.1.

TR

Figure 4.1

[ ]
[ ]

First we show that k(o) = 0. Let f be a y-harmonic function with f(p) = 1,
and f(r) = 0 on all nodes r on or below the diagonal of slope -1 which includes
g. Similarly, let g be a y-harmonic function with f(p) = 1, and f(r) = 0 on

all nodes r on or below the diagonal of slope +1 which includes ¢. For rs # o,

(f(r) = f(s))(g(r) — g(s)) = 0. Furthermore, (f(p) — f(q))(9(p) — 9(q)) = 1.
Thus

> wilfi = [i)(gi — g5) = #(0) (17)

C’i]EQI

By hypothesis, the sum is 0, so k(o) = 0.

Consider next an edge of level two like ¢ = pg in Figure 4.2.
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Figure 4.2

By using Lemma 3.1 as in Lemma 3.2, there is a y-harmonic function f with
f(p) =0,f(q) =1 and f(r) = 0 for all nodes r on or below the diagonal of
slope 1 which includes p. There is also a y-harmonic function g with g(p) =
0,9(q) =1 and g(r) = 1 for all nodes r on or below the diagonal of slope +1
which includes g. We have already shown that x(7) = 0 for each edge 7 of level
one. For this choice of f and g, (f(p) — f(q))(g9(p) — g(q)) = 1. For any other
edge rs , either (f(r) — f(s))(g(r) — g(s)) = 0 or k(rs) = 0. Thus formula
(6) again holds. By hypothesis, the sum is 0, so k(o) = 0. This argument
shows that k(o) = 0 for each edge o of level two. Considering next an edge
of level three such as o in figure 4.3, we construct v-harmonic functions f, g
which show that (o) = 0. Continuing in this way, level by level, we find that
k(o) =0 on all edges. QED
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Figure 4.3

For a given conductivity 4 on 2 and boundary potential ¢ the power dis-
sipated by Q is Q,(¢,¢). The following proposition proves a kind of mono-
tonicity for the power dissipated.

Proposition 4.3 Suppose conductances v° and v* satisfy v'(a) > 7°(a) for
all o € Qy and 4 (1) > 7°(7) for some 7 € Q. Then there is a ¢ such that

le (¢7 QD) > Q’Yo(qbv qb)
Proof: Let 7 = (1 — ¢)y° + ¢4, and let ¢ be any boundary function and
define sy4(t) = Q,t(p, ¢). Then

so(1) — 54(0) = /01 s, ()t

But
sy(t) = D LW = f7)?

T34y €
where Ly f* = 0 and f* = ¢ on 0Q. Since ~/;(t) = ~; — ) > 0, it follows
that s4(1) > s4(0). If 44, > 7%, for some oy, then it follows from Theorem 4.2
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that there is a 4°-harmonic function f° such that

sy(0)= 3" (v =)= f)) #£0

Uijeﬂl

and hence s4(0) > 0, where ¢ is f© restricted to 9. Thus Q,1(¢,$) >
Q0(0,¢). QED

5 The continuity of 7!

Let © = (Qo,) be a network with NV edges and m boundary nodes.

Theorem 5.1 The map T has a continuous inverse. The image T((RY)N) is
an embedded submanifold of F', and T' is a diffeomorphism onto its image.

Proof: Let v; and 7, be two conductivity functions on ;. Suppose that
Q) 1s close to ),,. Then A, is close to A,,. This means that if ¢ is given
then A, (¢) is close to A, (¢), and if I is given with Y c50 I(p) = 0 then
1 = AJN(I) is close to ¢ = AZM(I). (By AJ'(/) we mean the function ¢
defined on 99y such that I, = I, and such that ¢(py) = 0, where pg is a
fixed node on 00y which is used to uniquely define A;l and make it a linear
map). Now we consider the algorithm for computing 7!. First consider the

Neumann problem:

I(qo

(90) =
() =
I(q) = UlfQ%Qo,ql
é(po) =

—~

where the notation refers to Figure 3.1. Let ¢y = AJ'(1) and ¢, = AZN(I).
Then ¢y is close to ¢g, and so ¢1(qo) is close to ¢a(qo). But ¢1(qo) = 1/71(00)
and ¢2(qo) = 1/72(00), and so y1(0g) is close to y2(0g). Similarly, v1(oy) is
close to v2(0o1), and we see that the corner values of 4; and 7, are close.
Next we consider the Neumann problems of equation (6), which are used

in the inductive computation of the values of v. We assume already proved
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that the previously computed values of v are close. The two different solutions

(1)

of the Neumann problems found by using A,, and A,, are denoted by h;’ and
h§2) and are close by assumption. Hence the coefficients of the equations
k
3l <1
7=1
o () =0
7=1
(18)
are close to the coefficients of the equations
oz§2) =1
7=1
a?h?(g) = 0
7=1
(19)

Thus the solutions {agl) : 1 <k} and {a;Q) : 1 <k} are close. It then follows

that the boundary values of the functions
_ (1 p (1)
71=1

and

are close. Proceeding inductively we see that the functions v; and v, are close.
By the results of Section 4, the map dT is injective, so T'((R*)") is an
immersed submanifold. By what we have just proved 7' is a homeomorphism

onto its image. QED
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