Math 308

Final Exam

Your Signature

Student ID #

	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	Form	Bonus	\sum
Points														
of	50	13	12	17	8	3	7	6	3	4	6	6	(10)	135

- No books are allowed. But you are allowed one sheet (10 x 8) of handwritten notes (back and front). You may use a calculator.
- Place a box around your final answer to each question.
- If you need more room, use the back of each page and indicate to the grader how to find the logic order of your answer.
- Raise your hand if you have questions or need more paper.
- For TRUE/FALSE problems, you just need to cross the right box. For each correct answer, you will get 1 point, for each incorrect answer, -1 point is added. For no answer you will get zero points. In each subsection of the TRUE/FALSE part, you can never get less than zero points.
- In order to get points for formal correctness, underline vectors, use {}-brackets for sets, declare parameters, mark equivalent matrices properly and keep a reasonable order and neatness.

Do not open the test until everyone has a copy and the start of the test is announced.

GOOD LUCK!

1.) For each correct answer in the TRUE/FALSE part, you will get 1 point, for each incorrect answer, there will be one point subtracted, i.e. you get -1 point. For no answer, you get 0 points. You can not get less than 0 points out of one subproblem (which are the problems, (a)-(h))

(a)	Cross the right box for the statements about linear systems.		
	A homogeneous system can either have no solution, a unique solution	\Box TRUE	\Box FALSE
	or infinitely many solutions.		
	It is possible that an inhomogeneous system does not have a solution.	□ TRUE	\Box FALSE
	A homogeneous system with 5 variables and 5 equations has exactly	□ TRUE	\Box FALSE
	one solution.		
	If $\mathbf{s} \neq 0$ is a solution to a linear system of the form $A\mathbf{x} = 0$ for a	\Box TRUE	\Box FALSE
	matrix A , then this system has infinitely many solutions.		
	A homogeneous system with at least one free variable has infinitely	\Box TRUE	\Box FALSE
	many solutions.		
	Let A be a (5,7)-matrix. Then any solution to $A\mathbf{x} = 0$ is a vector in	\Box TRUE	\Box FALSE
	\mathbb{R}^{7} .		
	Let A be a $(3,3)$ -matrix with linearly independent rows. Then $A\mathbf{x} = \mathbf{b}$	□ TRUE	\Box FALSE
	has exactly one solution for any b in \mathbb{R}^3 .		
(b)	Cross the right box for the statements about span.		
	Let $S := {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4} \subseteq \mathbb{R}^n$. Then $\mathbf{u}_1 - 2\mathbf{u}_1 + 5\mathbf{u}_2 - 0\mathbf{u}_4$ is an	□ TRUE	\Box FALSE
	element of span (S) .		
	The span of $\{\mathbf{u}\}$ has infinitely many elements for any choice of $\mathbf{u} \in \mathbb{R}^n$.	□ TRUE	\Box FALSE
	$\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\} \subseteq \mathbb{R}^3$ spans \mathbb{R}^3 for any choice of vectors \mathbf{u}_i .	□ TRUE	□ FALSE
	Let $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m\} \subseteq \mathbb{R}^n$. Then $\operatorname{span}\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m\} \subsetneq \{\mathbf{u}_1, \mathbf{u}_1 + \dots + \mathbf{u}_m\}$	□ TRUE	\Box FALSE
	$\mathbf{u}_2, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_m \}.$		
	Let A be an (n, m) -matrix and let $\mathbf{u} \in col(A)$. Then $A\mathbf{x} = \mathbf{u}$ has a	□ TRUE	\Box FALSE
	solution.		
	Let $0 \neq \mathbf{u}$ be a vector in \mathbb{R}^n . Then $0 \notin \operatorname{span}{\mathbf{u}}$.	□ TRUE	\Box FALSE
	Let $\mathbf{u}_0 \in \operatorname{span}\{\mathbf{u}_1, \ldots, \mathbf{u}_m\} \subseteq \mathbb{R}^n$. Then $\{\mathbf{u}_0, \mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_m\}$ is lin-	□ TRUE	\Box FALSE
	early dependent.		
	Let A be an (m, n) -matrix. Then $\{A\mathbf{u} \mid \mathbf{u} \in \mathbb{R}^n\} = \operatorname{col}(A)$.	□ TRUE	\Box FALSE
(c)	Cross the right box for the statements about linear independence, spa		
	For any vector \mathbf{u} and $a \in \mathbb{R}$, the set $\{\mathbf{u}, a\mathbf{u}\}$ is linearly dependent.	\square TRUE	\Box FALSE
	Let $S = \operatorname{span}{\mathbf{u}_1, \mathbf{u}_2}$. Then $\dim(S) = 2$.	\Box TRUE	$\Box FALSE$
	Let $S \subseteq \mathbb{R}^4$ be a subspace of dimension 3. Then S has a uniquely	\Box TRUE	$\Box FALSE$
	determined basis with 4 elements. $5 - 1 = 100$ $5 - 10$		
	Let $S_1 \subseteq S_2$ be subspaces of \mathbb{R}^n . Then $\dim(S_1) < \dim(S_2)$.	□ TRUE	□ FALSE
	Let S be a subspace of \mathbb{R}^n with dim $(S_1) \leq \dim(S_2)$.	\Box TRUE	$\Box FALSE$
	$\{\mathbf{u}_1, \ldots, \mathbf{u}_k\} \subseteq S$. If $k > m$ then U is linearly dependent.		
	$\{\mathbf{u}_1, \dots, \mathbf{u}_k\} \subseteq S$. If $k \geq m$ then O is intearly dependent. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\} \subseteq \mathbb{R}^2$ is a linearly dependent set.	□ TRUE	□ FALSE
	Let A be an (n, m) -matrix. Then null(A) is a subspace of \mathbb{R}^m .	\Box TRUE	$\Box FALSE$
	Let A be a matrix. If nullity(A) = 3, then $A\mathbf{x} = 0$ has infinitely	\Box TRUE	$\Box FALSE$
	Let A be a matrix. If $\operatorname{numty}(A) = 5$, then $A\mathbf{x} = 0$ has minimely many solutions.		
	many solutions.		

(d)	Cross the right box for the statements about matrices and homomorphisms.								
	Let T be a homomorphism with corresponding matrix A_T . If		□ FALSE						
	$\operatorname{nullity}(A_T) \ge 1$ then T is not injective.								
	Let $T: \mathbb{R}^4 \to \mathbb{R}^8$ be a homomorphism. Then T can be surjec-	□ TRUE	□ FALSE						
	tive, but not injective.								
	Let T be a homomorphism with corresponding matrix A_T .	□ TRUE	□ FALSE						
	Then $\ker(T) = \operatorname{null}(A_T)$.								
	Let $T : \mathbb{R}^{12} \to \mathbb{R}^4$. Then dim(ker(T)) must be 8 or greater.	□ TRUE	□ FALSE						
	Let $T : \mathbb{R}^m \to \mathbb{R}^n$ be a homomorphism. Then range $(T) \subseteq \mathbb{R}^n$.	\Box TRUE	\Box FALSE						
	The function $T: \mathbb{R}^m \to \mathbb{R}^m, \mathbf{u} \mapsto \mathbf{u}$ is a linear homomorphism.	\Box TRUE	□ FALSE						
	If $T: \mathbb{R}^m \to \mathbb{R}^n$ is a surjective homomorphism with corre-	\Box TRUE	\Box FALSE						
	sponding matrix A_T , then $\mathbf{b} \in \operatorname{col}(A_T)$ for any $\mathbf{b} \in \mathbb{R}^n$.								
	If T is an isomorphism with domain \mathbb{R}^n and corresponding	□ TRUE	□ FALSE						
	matrix A_T , then A_T is an (n, n) -matrix.								
(e)	Cross the right box for the statements about matrices. Let $A = B + c$ $A^2 = B^2 - c (A + B) (A - B)$								
	Let A, B be (n, n) -matrices. Then $A^2 - B^2 = (A+B)(A-B)$	□ TRUE	□ FALSE						
	Let A be an (n, m) -matrix. Then A^2 is defined.		□ FALSE						
	Let A be a square matrix. Then $det(2A) = 2 det(A)$.		□ FALSE						
	A square matrix A is singular, if and only $det(A) = 0$.	□ TRUE	□ FALSE						
	If A is invertible and $A\mathbf{x} = \mathbf{b}$ has a solution \mathbf{s} , then \mathbf{b} is a	\Box TRUE	\Box FALSE						
	solution to $A^{-1}\mathbf{x} = \mathbf{s}$.								
	Let A, B be equivalent matrices. Then $det(A) = det(B)$.	\Box TRUE	\Box FALSE						
(f)	Cross the right box for the statements about column- and rowspace of a matrix A .								
	Let A, B be equivalent matrices. Then $row(A) = row(B)$.	□ TRUE	\Box FALSE						
	The rank of a matrix A is equal to the dimension of the row	□ TRUE	\Box FALSE						
	space of A .								
	Let A be a matrix. Then $row(A) = col(A)$.	□ TRUE	\Box FALSE						
	Let A be an (m, n) -matrix. Then rank (A) is less than or equal	□ TRUE	\Box FALSE						
	to <i>m</i> .								
(g)	Cross the right box for the statements about eigenvalues and	eigenspaces of an (n, n))-matrix A.						
	Any vector $0 \neq \mathbf{u} \in \mathbb{R}^n$ that satisfies $A\mathbf{u} = \lambda \mathbf{u}$ for some $\lambda \in \mathbb{R}$		FALSE						
	is an eigenvector of A .								
	Let λ be an eigenvalue for A. Then the set of eigenvectors of	□ TRUE	□ FALSE						
	A with eigenvalue λ forms the eigenspace E_{λ} of A.								
	The zero vector is always an eigenvector for any eigenvalue	□ TRUE	□ FALSE						
	for A because it satisfies the defining property $A0 = \lambda 0$.								
	If $rank(A)$ is less than the number of columns of A, then 0 is	□ TRUE	□ FALSE						
	an eigenvalue of A .								
	The matrix A may not have an eigenvalue.	□ TRUE	□ FALSE						
(h)	· ·								
(h)	Cross the right box for the statements about orthogonality of								
	Let $\mathbf{u}_1, \mathbf{u}_2$ be orthogonal to \mathbf{u} , then $\mathbf{u}_1 + \mathbf{u}_2$ is also orthogonal to \mathbf{u}_1	\square TRUE	\Box FALSE						
	to \mathbf{u} .								
	Two vectors in \mathbb{R}^1 can only be orthogonal if at least one of them is the gaps vector	\square TRUE	\Box FALSE						
	them is the zero vector.								
	There is no nonzero vector u that is orthogonal to u . Let A be a matrix and u \in null (A) . Then u \in new $(A)^{\perp}$.	$\Box \text{ TRUE}$ $\Box \text{ TRUE}$	$\Box FALSE$ $\Box FALSE$						
	Let A be a matrix and $\mathbf{u} \in \operatorname{null}(A)$. Then $\mathbf{u} \in \operatorname{row}(A)^{\perp}$.								

2.(2+4+3+4 points) Consider the following linear homomorphism:

$$T: \begin{bmatrix} u_1\\u_2\\u_3 \end{bmatrix} \rightarrow \begin{bmatrix} u_1+3u_2+u_3\\u_2+u_3\\2u_1-3u_3 \end{bmatrix}.$$

(a) Find the corresponding matrix A, such that $T(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^3$.

(b) Find the kernel of T.

(c) Calculate the determinant of A. Is T invertible? Justify your answer.

(d) Find the inverse T^{-1} of T using A.

3.(4+2+4+2 points) Consider the following matrix:

$$A = \begin{bmatrix} 1 & -2 & 3 & -2 & 2 \\ 3 & -4 & -1 & -2 & 0 \\ 2 & -3 & 1 & -2 & 1 \end{bmatrix}.$$

(a) Find the null space of A.

(b) Verify that the vector $v = [0, -1, 0, 2, 1]^t$ is an element of null(A).

(c) Find a basis of null(A), that contains the vector $v = [0, -1, 0, 2, 1]^t$.

(d) What is the nullity of A? What is the rank of A?

4.(5+4+4+2+2 points) Consider the following matrix:

$$\left[\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 0 & 2 & 5 & 1 \\ 0 & 0 & -3 & -1 \\ 0 & 2 & 14 & 4 \end{array}\right]$$

(a) Determine the characteristic polynomial χ_A of A. Show all your work! (Key, so that you can continue: The characteristic polynomial is $\chi_A = \lambda^4 - 4\lambda^3 + 5\lambda^2 - 2\lambda$.)

(b) Determine the eigenvalues for A.

(c) Compute the eigenspace for the eigenvalue $\lambda = 1$. What is the dimension of this eigenspace?

(e) What is the only possible dimension of the eigenspace with eigenvalue $\lambda = 0$? Answer this question with the help of χ_A and justify your answer.

(f) Based on the knowledge about the eigenvalues of this matrix, what can be said about the determinant of A?

5.(4+2+2 points) Let
$$S = \operatorname{span}\{\mathbf{s}_1 = \begin{bmatrix} -1\\4\\2\\0 \end{bmatrix}, \mathbf{s}_2 = \begin{bmatrix} 2\\0\\-2\\4 \end{bmatrix}, \mathbf{s}_3 = \begin{bmatrix} 0\\2\\0\\1 \end{bmatrix}\}.$$

(a) Find a basis for S^{\perp} .

(b) Compute the norm $||\mathbf{s}_1||$ of \mathbf{s}_1 .

(c) What is the norm of

$$\frac{1}{||\mathbf{s}_1||}\mathbf{s}_1?$$

6. (3 points) Find a matrix that has $\chi = \lambda^2 + 2$ as its characteristic polynomial.

7.(2+1+1+3 points) Suppose that A is a (5, 16)-matrix.
(a) What is the maximum possible value for rank(A)?

(b) What is the minimum possible value for nullity(A)?

(c) Suppose that $\dim(\operatorname{col}(A)) = 5$. What is $\operatorname{nullity}(A)$?

- (d) Consider the homomorphism $T: \mathbb{R}^{16} \to \mathbb{R}^5, \mathbf{x} \mapsto A\mathbf{x}$.
- (i) What does the nullity of A represent in terms of T?

(ii) What is the dimension of the range of T if the nullity of A is at its minimum value? Is T then surjective?

8.(4+1+1 points) Let $S \subseteq \mathbb{R}^5$ be a subspace of dimension 4. (a) What are the possible dimensions of subspaces S_i , that are subsets of S, i.e. $S_i \subseteq S$?

(b) How many elements does the subspace of S of dimension 0 have?

(c) How many elements does a subspace of S of dimension 1 have?

9.(3 points) Calculate

$$\left(\left[\begin{array}{cc} 2 & 3 \\ 0 & -1 \end{array} \right] + \left[\begin{array}{cc} 2 & -2 \\ 1 & 1 \end{array} \right] \right)^2.$$

10.(4 points) Let $\mathcal{B}_1 = \{ \begin{bmatrix} 3\\1 \end{bmatrix}, \begin{bmatrix} -5\\-1 \end{bmatrix} \}$ be a basis for \mathbb{R}^2 and let $\mathbf{u} = \begin{bmatrix} 8\\2 \end{bmatrix}$ be a vector represented with respect to the standard matrix. What is the coordinate vector of \mathbf{x} with respect to \mathcal{B}_1 ?

11.(3+3 points) Let

$$A = \begin{bmatrix} 1 & 17 & -3 & 23 & 3 & -3 & 2 & 6 \\ 10 & 170 & -30 & 230 & 30 & -30 & 20 & 60 \\ 0 & 3 & 0 & -2 & -51 & 12 & -27 & 9 \\ 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 \\ 2 & -5 & 10 & -1 & 3 & -1 & 1 & 1 \\ 4 & -10 & 20 & -2 & 6 & -2 & 2 & 2 \\ 7 & 3 & -1 & 0 & 8 & 7 & 1 & 0 \\ 0 & 0 & 0 & -2 & 12 & 9 & 11 & -2 \end{bmatrix}.$$

(a) Have a close look at A and find its determinant without actually computing it.

(b) Is $\lambda = 0$ an eigenvalue of A? Justify your answer.