Your Name

Your Signature
\square

Student ID \#

	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	Form	Bonus	\sum
Points														
of	50	13	12	17	8	3	7	6	3	4	6	6	(10)	135

- No books are allowed. But you are allowed one sheet (10 x 8) of handwritten notes (back and front). You may use a calculator.
- Place a box around your final answer to each question.
- If you need more room, use the back of each page and indicate to the grader how to find the logic order of your answer.
- Raise your hand if you have questions or need more paper.
- For TRUE/FALSE problems, you just need to cross the right box. For each correct answer, you will get 1 point, for each incorrect answer, -1 point is added. For no answer you will get zero points. In each subsection of the TRUE/FALSE part, you can never get less than zero points.
- In order to get points for formal correctness, underline vectors, use \{\}-brackets for sets, declare parameters, mark equivalent matrices properly and keep a reasonable order and neatness.

Do not open the test until everyone has a copy and the start of the test is announced.
1.) For each correct answer in the TRUE/FALSE part, you will get 1 point, for each incorrect answer, there will be one point subtracted, i.e. you get -1 point. For no answer, you get 0 points. You can not get less than 0 points out of one subproblem (which are the problems, (a)-(h))

(a)	Cross the right box for the statements about linear systems.		
	A homogeneous system can either have no solution, a unique solution or infinitely many solutions.	\square TRUE	\square FALSE
	It is possible that an inhomogeneous system does not have a solution.	\square TRUE	\square FALSE
	A homogeneous system with 5 variables and 5 equations has exactly one solution.	\square TRUE	\square FALSE
	If $\mathbf{s} \neq \mathbf{0}$ is a solution to a linear system of the form $A \mathbf{x}=\mathbf{0}$ for a matrix A, then this system has infinitely many solutions.	\square TRUE	\square FALSE
	A homogeneous system with at least one free variable has infinitely many solutions.	\square TRUE	\square FALSE
	Let A be a (5,7)-matrix. Then any solution to $A \mathbf{x}=\mathbf{0}$ is a vector in \mathbb{R}^{7}.	\square TRUE	\square FALSE
	Let A be a (3,3)-matrix with linearly independent rows. Then $A \mathbf{x}=\mathbf{b}$ has exactly one solution for any \mathbf{b} in \mathbb{R}^{3}.	\square TRUE	\square FALSE
(b)	Cross the right box for the statements about span.		
	Let $S:=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\} \subseteq \mathbb{R}^{n}$. Then $\mathbf{u}_{1}-2 \mathbf{u}_{1}+5 \mathbf{u}_{2}-0 \mathbf{u}_{4}$ is an element of $\operatorname{span}(S)$.	\square TRUE	\square FALSE
	The span of $\{\mathbf{u}\}$ has infinitely many elements for any choice of $\mathbf{u} \in \mathbb{R}^{n}$.	\square TRUE	\square FALSE
	$\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\} \subseteq \mathbb{R}^{3}$ spans \mathbb{R}^{3} for any choice of vectors \mathbf{u}_{i}.	\square TRUE	\square FALSE
	Let $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{m}\right\} \subseteq \mathbb{R}^{n}$. Then $\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{m}\right\} \varsubsetneqq\left\{\mathbf{u}_{1}, \mathbf{u}_{1}+\right.$ $\left.\mathbf{u}_{2}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{m}\right\}$.	\square TRUE	\square FALSE
	Let A be an (n, m)-matrix and let $\mathbf{u} \in \operatorname{col}(A)$. Then $A \mathbf{x}=\mathbf{u}$ has a solution.	\square TRUE	\square FALSE
	Let $\mathbf{0} \neq \mathbf{u}$ be a vector in \mathbb{R}^{n}. Then $\mathbf{0} \notin \operatorname{span}\{\mathbf{u}\}$.	\square TRUE	\square FALSE
	Let $\mathbf{u}_{0} \in \operatorname{span}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\} \subseteq \mathbb{R}^{n}$. Then $\left\{\mathbf{u}_{0}, \mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{m}\right\}$ is linearly dependent.	\square TRUE	\square FALSE
	Let A be an (m, n)-matrix. Then $\left\{A \mathbf{u} \mid \mathbf{u} \in \mathbb{R}^{n}\right\}=\operatorname{col}(A)$.	\square TRUE	\square FALSE

(c)	Cross the right box for the statements about linear independence, span, bases and dimensions.		
	For any vector \mathbf{u} and $a \in \mathbb{R}$, the set $\{\mathbf{u}, a \mathbf{u}\}$ is linearly dependent.	\square TRUE	\square FALSE
	Let $S=\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$. Then $\operatorname{dim}(S)=2$.	\square TRUE	\square FALSE
	Let $S \subseteq \mathbb{R}^{4}$ be a subspace of dimension 3. Then S has a uniquely determined basis with 4 elements.	\square TRUE	\square FALSE
	Let $S_{1} \subseteq S_{2}$ be subspaces of \mathbb{R}^{n}. Then $\operatorname{dim}\left(S_{1}\right)<\operatorname{dim}\left(S_{2}\right)$.	\square TRUE	\square FALSE
	Let S be a subspace of \mathbb{R}^{n} with $\operatorname{dim}(S)=m$ and let $U:=$ $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\} \subseteq S$. If $k>m$ then U is linearly dependent.	\square TRUE	\square FALSE
	$\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\} \subseteq \mathbb{R}^{2}$ is a linearly dependent set.	\square TRUE	\square FALSE
	Let A be an (n, m)-matrix. Then $\operatorname{null}(A)$ is a subspace of \mathbb{R}^{m}.	\square TRUE	\square FALSE
	Let A be a matrix. If $\operatorname{nullity}(A)=3$, then $A \mathbf{x}=\mathbf{0}$ has infinitely many solutions.	\square TRUE	\square FALSE

(d)	Cross the right box for the statements about matrices and homomorphisms.		
	Let T be a homomorphism with corresponding matrix A_{T}. If $\operatorname{nullity}\left(A_{T}\right) \geq 1$ then T is not injective.	\square TRUE	\square FALSE
	Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{8}$ be a homomorphism. Then T can be surjective, but not injective.	\square TRUE	\square FALSE
	Let T be a homomorphism with corresponding matrix A_{T}. Then $\operatorname{ker}(T)=\operatorname{null}\left(A_{T}\right)$.	\square TRUE	\square FALSE
	Let $T: \mathbb{R}^{12} \rightarrow \mathbb{R}^{4}$. Then $\operatorname{dim}(\operatorname{ker}(T))$ must be 8 or greater.	\square TRUE	\square FALSE
	Let $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a homomorphism. Then range $(T) \subseteq \mathbb{R}^{n}$.	\square TRUE	\square FALSE
	The function $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}, \mathbf{u} \mapsto \mathbf{u}$ is a linear homomorphism.	\square TRUE	\square FALSE
	If $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is a surjective homomorphism with corresponding matrix A_{T}, then $\mathbf{b} \in \operatorname{col}\left(A_{T}\right)$ for any $\mathbf{b} \in \mathbb{R}^{n}$.	\square TRUE	\square FALSE
	If T is an isomorphism with domain \mathbb{R}^{n} and corresponding matrix A_{T}, then A_{T} is an (n, n)-matrix.	\square TRUE	\square FALSE
(e)	Cross the right box for the statements about matrices.		
	Let A, B be (n, n)-matrices . Then $A^{2}-B^{2}=(A+B)(A-B)$	\square TRUE	\square FALSE
	Let A be an (n, m)-matrix. Then A^{2} is defined.	\square TRUE	\square FALSE
	Let A be a square matrix. Then $\operatorname{det}(2 A)=2 \operatorname{det}(A)$.	\square TRUE	\square FALSE
	A square matrix A is singular, if and only $\operatorname{det}(A)=0$.	\square TRUE	\square FALSE
	If A is invertible and $A \mathbf{x}=\mathbf{b}$ has a solution \mathbf{s}, then \mathbf{b} is a solution to $A^{-1} \mathbf{x}=\mathbf{s}$.	\square TRUE	\square FALSE
	Let A, B be equivalent matrices. Then $\operatorname{det}(A)=\operatorname{det}(B)$.	\square TRUE	\square FALSE
(f)	Cross the right box for the statements about column- and rowspace of a matrix A.		
	Let A, B be equivalent matrices. Then $\operatorname{row}(A)=\operatorname{row}(B)$.	\square TRUE	\square FALSE
	The rank of a matrix A is equal to the dimension of the row space of A.	\square TRUE	\square FALSE
	Let A be a matrix. Then $\operatorname{row}(A)=\operatorname{col}(A)$.	\square TRUE	\square FALSE
	Let A be an (m, n)-matrix. Then $\operatorname{rank}(A)$ is less than or equal to m.	\square TRUE	\square FALSE
(g)	Cross the right box for the statements about eigenvalues and eigenspaces of an (n, n)-matrix A.		
	Any vector $\mathbf{0} \neq \mathbf{u} \in \mathbb{R}^{n}$ that satisfies $A \mathbf{u}=\lambda \mathbf{u}$ for some $\lambda \in \mathbb{R}$ is an eigenvector of A.	\square TRUE	\square FALSE
	Let λ be an eigenvalue for A. Then the set of eigenvectors of A with eigenvalue λ forms the eigenspace E_{λ} of A.	\square TRUE	\square FALSE
	The zero vector is always an eigenvector for any eigenvalue for A because it satisfies the defining property $A \mathbf{0}=\lambda \mathbf{0}$.	\square TRUE	\square FALSE
	If $\operatorname{rank}(A)$ is less than the number of columns of A, then 0 is an eigenvalue of A.	\square TRUE	\square FALSE
	The matrix A may not have an eigenvalue.	\square TRUE	\square FALSE
(h)	Cross the right box for the statements about orthogonality of vectors.		
	Let $\mathbf{u}_{1}, \mathbf{u}_{2}$ be orthogonal to \mathbf{u}, then $\mathbf{u}_{1}+\mathbf{u}_{2}$ is also orthogonal to \mathbf{u}.	\square TRUE	\square FALSE
	Two vectors in \mathbb{R}^{1} can only be orthogonal if at least one of them is the zero vector.	\square TRUE	\square FALSE
	There is no nonzero vector \mathbf{u} that is orthogonal to \mathbf{u}.	\square TRUE	\square FALSE
	Let A be a matrix and $\mathbf{u} \in \operatorname{null}(A)$. Then $\mathbf{u} \in \operatorname{row}(A)^{\perp}$.	\square TRUE	\square FALSE

2. $(2+4+3+4$ points) Consider the following linear homomorphism:

$$
T:\left[\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right] \rightarrow\left[\begin{array}{c}
u_{1}+3 u_{2}+u_{3} \\
u_{2}+u_{3} \\
2 u_{1}-3 u_{3}
\end{array}\right]
$$

(a) Find the corresponding matrix A, such that $T(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^{3}$.
(b) Find the kernel of T.
(c) Calculate the determinant of A. Is T invertible? Justify your answer.
(d) Find the inverse T^{-1} of T using A.
3. $(4+\mathbf{2}+\mathbf{4}+\mathbf{2}$ points) Consider the following matrix:

$$
A=\left[\begin{array}{rrrrr}
1 & -2 & 3 & -2 & 2 \\
3 & -4 & -1 & -2 & 0 \\
2 & -3 & 1 & -2 & 1
\end{array}\right]
$$

(a) Find the null space of A.
(b) Verify that the vector $v=[0,-1,0,2,1]^{t}$ is an element of $\operatorname{null}(A)$.
(c) Find a basis of $\operatorname{null}(A)$, that contains the vector $v=[0,-1,0,2,1]^{t}$.
(d) What is the nullity of A ? What is the rank of A ?
4. $(5+4+4+2+2$ points $)$ Consider the following matrix:
$\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & 2 & 5 & 1 \\ 0 & 0 & -3 & -1 \\ 0 & 2 & 14 & 4\end{array}\right]$
(a) Determine the characteristic polynomial χ_{A} of A. Show all your work! (Key, so that you can continue: The characteristic polynomial is $\chi_{A}=\lambda^{4}-4 \lambda^{3}+5 \lambda^{2}-2 \lambda$.)
(b) Determine the eigenvalues for A.
(c) Compute the eigenspace for the eigenvalue $\lambda=1$. What is the dimension of this eigenspace?
(e) What is the only possible dimension of the eigenspace with eigenvalue $\lambda=0$? Answer this question with the help of χ_{A} and justify your answer.
(f) Based on the knowledge about the eigenvalues of this matrix, what can be said about the determinant of A ?
$\mathbf{5 .}(\mathbf{4}+\mathbf{2}+\mathbf{2}$ points $)$ Let $S=\operatorname{span}\left\{\mathbf{s}_{1}=\left[\begin{array}{r}-1 \\ 4 \\ 2 \\ 0\end{array}\right], \mathbf{s}_{2}=\left[\begin{array}{r}2 \\ 0 \\ -2 \\ 4\end{array}\right], \mathbf{s}_{3}=\left[\begin{array}{l}0 \\ 2 \\ 0 \\ 1\end{array}\right]\right\}$.
(a) Find a basis for S^{\perp}.
(b) Compute the norm $\left\|\mathbf{s}_{1}\right\|$ of \mathbf{s}_{1}.
(c) What is the norm of

$$
\frac{1}{\left\|\mathbf{s}_{1}\right\|} \mathbf{s}_{1} ?
$$

6. (3 points) Find a matrix that has $\chi=\lambda^{2}+2$ as its characteristic polynomial.
7. $(\mathbf{2}+\mathbf{1}+\mathbf{1}+\mathbf{3}$ points) Suppose that A is a $(5,16)$-matrix.
(a) What is the maximum possible value for $\operatorname{rank}(A)$?
(b) What is the minimum possible value for $\operatorname{nullity}(A)$?
(c) Suppose that $\operatorname{dim}(\operatorname{col}(A))=5$. What is nullity (A) ?
(d) Consider the homomorphism $T: \mathbb{R}^{16} \rightarrow \mathbb{R}^{5}, \mathbf{x} \mapsto A \mathbf{x}$.
(i) What does the nullity of A represent in terms of T ?
(ii) What is the dimension of the range of T if the nullity of A is at its minimum value? Is T then surjective?
8. ($4+1+1$ points) Let $S \subseteq \mathbb{R}^{5}$ be a subspace of dimension 4 .
(a) What are the possible dimensions of subspaces S_{i}, that are subsets of S, i.e. $S_{i} \subseteq S$?
(b) How many elements does the subspace of S of dimension 0 have?
(c) How many elements does a subspace of S of dimension 1 have?
9.(3 points) Calculate

$$
\left(\left[\begin{array}{rr}
2 & 3 \\
0 & -1
\end{array}\right]+\left[\begin{array}{rr}
2 & -2 \\
1 & 1
\end{array}\right]\right)^{2} .
$$

10.(4 points) Let $\mathcal{B}_{1}=\left\{\left[\begin{array}{l}3 \\ 1\end{array}\right],\left[\begin{array}{l}-5 \\ -1\end{array}\right]\right\}$ be a basis for \mathbb{R}^{2} and let $\mathbf{u}=\left[\begin{array}{l}8 \\ 2\end{array}\right]$ be a vector represented with respect to the standard matrix. What is the coordinate vector of \mathbf{x} with respect to \mathcal{B}_{1} ?
11.(3+3 points) Let

$$
A=\left[\begin{array}{rrrrrrrr}
1 & 17 & -3 & 23 & 3 & -3 & 2 & 6 \\
10 & 170 & -30 & 230 & 30 & -30 & 20 & 60 \\
0 & 3 & 0 & -2 & -51 & 12 & -27 & 9 \\
8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 \\
2 & -5 & 10 & -1 & 3 & -1 & 1 & 1 \\
4 & -10 & 20 & -2 & 6 & -2 & 2 & 2 \\
7 & 3 & -1 & 0 & 8 & 7 & 1 & 0 \\
0 & 0 & 0 & -2 & 12 & 9 & 11 & -2
\end{array}\right] .
$$

(a) Have a close look at A and find its determinant without actually computing it.
(b) Is $\lambda=0$ an eigenvalue of A ? Justify your answer.

