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Chapter 1

Linear Equations

1.1 Notation

Before we start digging into the theory of linear algebra, we need to introduce
and fix some notation.

1.1.1 Notation
We let
-N be the set of natural numbers, i.e. the set {1, 2, 3, . . .}
Note that we do not assume that 0 is an element of N.
-Z be the set of integers, i.e. the set {0, 1,−1, 2,−2, 3,−3 . . .}
-R be the set of real numbers
-φ := {}, the empty set.
-S1 ⊆ S2 means that whenever s ∈ S1, then it is also an element of S2.
-S1 ( S2 means that S1 ⊆ S2, and there is at least one element s ∈ S2, which
is not an element of S1.

1.2 Systems of Linear Equations

Let’s start with some applications in linear algebra, so that we understand
what all the structures, that we will learn later, are good for.
Consider the system

2x1 + 3x2 = 12
x1 − x2 = 1
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Solving this system means finding the set of all pairs (x1, x2), which show
a true statement when plugged in. We can find solutions in many different
ways.
Let us first approach the system algebraically, using elimination. The advan-
tage of elimination is that it can easily be generalized to systems of any size.
Moreover, by the end of this chapter, we will be able to precisely describe
the way of finding solutions algorithmically.
We start with eliminating x1 in the second row. To this end, compare the
coefficients of x1 of the first and second row. To eliminate x1 in the second
line, we need to multiply the second line by −2 and add this to the first line:

2x1 + 3x2 = 12
x1 − x2 = 1 ×(−2)

2x1 + 3x2 = 12
−2x1 + 2x2 = −2

2x1 + 3x2 = 12
5x2 = 10

We can now solve for x2 in the second row (x2 = 2) and plug this result into
the first row:

2x1 + 3× 2 = 12 −6
x2 = 2

We then get

2x1 = 6 : 2
x2 = 2

x1 = 3
x2 = 2

What does this result tell us? It gives us the solution: (3, 2) is the only
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solution to the system! Do the test! We plug in (3, 2) in the linear system:

2(3) + 3(2) = 12
3 − 2 = 1

12 = 12
1 = 1

There is also a geometrical interpretation available: Focussing on the first
row of the original system, we have

2x1 + 3x2 = 12.

Do you remember functions of the form ax1 + bx2 = c? These were lines in a
specific form. How do we get the slope and x2-interception from this form?
Slope: −(a

b
)

x2-intercept: c
b
.

In our example, we have a line with slope −2
3

and x2-intercept 4.
The second row of the system corresponds to a line with slope 1 and y-
intercept −1.
Finding a solution to the system can be interpreted as finding a point that
lies on both lines, i.e. the intersection of those lines.

-1

1 2 3 4 5

1

2

3

4

5

Let’s do the same for the following system:
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2x1 + x2 = 5
4x1 + 2x2 = 10 ×(−0.5)

2x1 + x2 = 5
0x1 + 0x2 = 0

How do we interpret this result? Obviously, the second row is always true.
We just follow the approach we did in the first example, just a bit more
general. In the first example, we found a unique solution for x2. That is
different here. The second row does not provide a unique solution for x2
(remember we must never, ever divide by 0). So let us go general: Let t ∈ R
be any real number, a so called parameter. Set x2 = t and consider the first
row:

2x1 + t = 5 −t ×(0.5)
x2 = t

x1 = 2.5− t
0x1 + 0x2 = 0

The set of solutions is therefore {(2.5 − t, t) | t ∈ R}. This has infinitely
many elements. Let us have a look at the geometrical interpretation.
Both rows of the original system are forms of the same line, and the solution,
i.e. the ”intersection of those two lines”, is this line.

-1

1 2 3 4 5
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We will now discuss a third example.

2x1 + x2 = 5
2x1 + x2 = 1 ×(−1)

2x1 + x2 = 5
0x1 + 0x2 = 4

The second row reveals a contradiction, so that we conclude that the system
has no solution at all. Geometrically, we see two parallel lines, i.e. two lines
that do not intersect at all.

1 2 3 4 5

1

2

3

4

5

-1

-2

-3

-4

Question: Which cases do we expect when dealing with a system of three
rows with three variables? What kind of geometrical objects are we dealing
with?
Let us continue with formally defining linear equations. This way, we will
be able, just from having the definition in its most general setting, to draw
conclusions about any system of linear equations.
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1.2.1 Definition
Let n ∈ N. Then

a1x1 + a2x2 + . . .+ amxm = b (1.1)

with coefficients ai, b ∈ R for 1 ≤ i ≤ m and xi variables or unknowns
for 1 ≤ i ≤ m is called a linear equation. A solution of this linear equation
is an ordered set of m numbers 

s1
s2

...
sm


(or m-tupel (s1, s2, . . . , sm)) such that replacing xi by si, the equation (1.1)
is satisfied. The solution set for the equation (1.1) is the set of all solutions
to the equation.

As we have seen above, we sometimes deal with more than one equation and
are interested in solutions that satisfy two or more equations simultaneously.
So we need to formulize this as well.

1.2.2 Definition
Let m,n ∈ N. Then a system of linear equations/linear system is a
collection of linear equations of the form

a1,1x1 + a1,2x2 + . . . + a1,mxm = b1
a2,1x1 + a2,2x2 + . . . + a2,mxm = b2

...
...

...
an,1x1 + an,2x2 + . . . + an,mxm = bn

with ai,j, bi ∈ R for 1 ≤ i ≤ n, 1 ≤ j ≤ m. The solution set of the system
is the set of m-tupels which each satisfy every equation of the system.

1.2.3 Remark
Note that any solution of a system with n equations and m variables is a list
with m entries (independent of the number of equations n)!!
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1.3 Echelon Systems

In this section, we will learn how to algorithmically solve a system of linear
equations.

Eliminating Consider the following system:

x1 − 2x2 + 3x3 = −1 (2) (−7)
−2x1 + 5x2 − 10x3 = 4

7x1 − 17x2 + 34x3 = −16

x1 − 2x2 + 3x3 = −1
x2 − 4x3 = 2 (3)

−3x2 + 13x3 = −9

x1 − 2x2 + 3x3 = −1
x2 − 4x3 = 2

x3 = −3

Back Substitution Once we have reached this triangular form of a system,
we can use back substitution for finding the set of solutions. To this end,
start with the last row of the previous system. We can read off from that
line that x3 = −3. So we plug this result in the second last row:

x2 − 4(−3) = 2,

which gives us x2 = −10. The solutions for x3, x2 can now be plugged in the
first line.

x1 = −1 + 2(−10)− 3(−3) = −12.

In summary, we get the solution set

S = {

 −12
−10
−3

}
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Check the solution Let’s go back to the original system, plug in the
solution, and verify that we did not make any mistake:

−12 − 2(−10) + 3(−3) = −1
−2(−12) + 5(−10) − 10(−3) = 4
7(−12) − 17(−10) + 34(−3) = −16,

which leads to a correct set of equations.

1.3.1 Definition (Consistent/Inconsistent)
If a system (of linear equations) has at least one solution, the system is said
to be consistent. Else it is called inconsistent.

The system above is therefore a consistent system.
How did we actually get to the solution? We managed to bring the system
into a specific form, so that we could read of the solution. Because it is a
strong mean, we put some terminology into the forms.

1.3.2 Definition
In a system of linear equations, in which a variable x occurs with a non-zero
coefficient as the first term in at least one equation, x is called a leading
variable.

1.3.3 Example
Consider the system:

12x1 − 2x2 + 5x3 + −2x5 = −1
3x4 + 4x5 = 7
2x4 − x5 = 2

7x5 = −14

the variables x1, x4, x5 are leading variables, while x2, x3 are not.

1.3.4 Definition
A system of linear equations is in triangular form, if it has the form:

a1,1x1 + a1,2x2 + a1,3x3 + . . . + a1,nxn = b1
a2,2x2 + a2,3x3 + . . . + a2,nxn = b2

a3,3x3 + . . . + a3,nxn = b3
. . .

...
...

an,nxn = bn

where the coefficients ai,i for 1 ≤ i ≤ n are nonzero.
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The following proposition reveals the meaning of triangular systems in terms
of finding the solution of a system.

1.3.5 Proposition
(a) Every variable of a triangular system is the leading variable of exactly
one equation.
(b) A triangular system has the same number of equations as variables.
(c) A triangular system has exactly one solution.

Proof: (a) xi is the leading variable of row number i.
(b) Follows from (a).
(c) Do the back substitution. �

Free variables The notion of a triangular system is very strong. Each vari-
able is the leading variable of exactly one equation. When solving systems,
we can relax the triangular notion a bit, but still find solutions. We therefore
introduce new terminology, after understanding the following example.
Consider the system:

2x1 − 4x2 + 2x3 + x4 = 11
x2 − x3 + 2x4 = 5

3x4 = 9

Performing back substitution, gives us x4 = 3. But, as x3 is not a leading
variable, we do not get a solution for it. We therefore set x3 := s, a pa-
rameter s ∈ R. We treat s to be a solution and go forth. After all we
get

x2 = −1 + s

and
x1 = 2 + s.

To emphasize it again, s can be any real number, and for each such choice,
we get a different solution for the system. What do we conclude? Yes, this
system has infinitely many solutions, given by

S = {


2 + s
−1 + s

s
3

 | s ∈ R} = {


2
−1

0
3

+ s


1
1
1
0

 | s ∈ R}.
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1.3.6 Definition
A linear system is in echelon form, if
(a) Every variable is the leading variable of at most one equation.
(b) The system is organized in a descending stair step pattern, so that the
index of the leading variables increases from top to bottom.
(c) Every equation has a leading variable.
For each system in echelon form, a variable, that is not a leading variable, is
called a free variable.

1.3.7 Proposition
A system in echelon form is consistent. If it has no free variable, it is in
triangular form and has exactly one solution. Otherwise, it has infinitely
many solutions.

Proof: If a system is in echelon form, determine its free variables, by
determining its variables that are not leading variables. Set the free variables
equal to free parameters and perform back substitution. This gives you a
solution, and depending on whether there are free variables or not, you get
the assertion about the number of solutions. �

1.3.8 Remark
Two comments that are important to know and understand:
- A system in echelon form is consistent and therefore does not have rows of
the form

0x1 + 0x2 + . . .+ 0xn = c

for some nonzero c ∈ R. That means, as free variables only have been
defined for echelon systems, that we only speak of free variables in
consistent systems.
- The second part of the previous proposition reads like that: If you find free
variables, then the system has infinitely many solutions!

Recapitulating what we did to find a solution, we saw that the coefficients of
the linear equations changed, but the solution did not (remember, we did the
check with the original system!). The reason for this is because we allowed
only certain manipulations, which did not change the solution set.

1.3.9 Definition
If two linear systems lead to the same solution set, we say that these systems
are equivalent. The following operations lead to equivalent systems:

(a) Interchange the position of two equations the system.
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(b) Multiply an equation by a nonzero constant.

(c) Add a multiple of one equation to another.

Each of these operations are called elementary row operations.

1.3.10 Remark (Algorithm for solving a linear system)
- Put system into echelon form:

A Switch rows until variable with least index with non-zero coefficient is
first row. This is a leading variable.

B Write down the first row AND leave it from now on.

C Eliminate terms with that variable in all but the first row.

D Repeat step [A] with system 2nd row to last row.

E Step [B] with second row.

F Step [C] with 3rd row until last.

(a) Repeat [A]-[C] likewise with remaining rows.

- If there is a row of the form 0x1 + 0x2 + . . .+ 0xn = 0, delete that row.
- If there is a row of the form 0x1 + 0x2 + . . . + 0xn = c for c 6= 0, stop and
state that the system is inconsistent and hence has no solution.
- Once you have system in echelon form identify leading variables.
- Identify then possible free variables. Set those variables equal to parameters
ti.
-Do backward substitution.
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1.3.11 Example
Let us apply the above algorithm.

x2 + 6x3 = −5
2x1 − x2 + 5x3 = −6
2x1 − 2x2 − x3 = −1

→
2x1 − x2 + 5x3 = −6
2x1 − 2x2 − x3 = −1

x2 + 6x3 = −5
→

2x1 − x2 + 5x3 = −6
−x2 − 6x3 = 5
x2 + 6x3 = −5

→
2x1 − x2 + 5x3 = −6

−x2 − 6x3 = 5
0x2 + 0x3 = 0

→

2x1 − x2 + 5x3 = −6
−x2 − 6x3 = 5

The leading variables are x1, x2, hence the free variable is x3. We set x3 = t
for a parameter t ∈ R. Now we perform backward substitution to get

2x1 − x2 = −6− 5t
−x2 = 5 + 6t

2x1 = −6− 5t− 5− 6t
x2 = −5− 6t

x1 = −11/2− 11/2t
x2 = −5− 6t

In summary, the solution set is

S = {


−11/2
−11/2t
−5
−6t

 | t ∈ R} =


11/2

0
−5

0

+ t


0

11/2
0
−6

 | t ∈ R}

1.4 Matrices and Gaussian Elimination

From now on we will start to make precise definitions in mathematical style.
Doing so, we can always be sure, that conclsuions we draw from assumptions
are true.
One might consider the following sections abstract and wonder what it has to
do with linear equations. I promise, that in the end, all that follows will an
important wole in finding the set of solutions. Let us start with a structure
called matrix, appearing all the time in linear algebra.
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1.4.1 Definition
Let m,n be natural numbers. We call a rectangular array A with n rows and
m columns of the form

A =


a1,1 a1,2 . . . a1,m
a2,1 a2,2 . . . a2,m
...

...
an,1 an,2 . . . an,m


with ai,j ∈ R for 1 ≤ i ≤ n and 1 ≤ j ≤ m an (n,m)-matrix or (n ×m)-
matrix. We also write (ai,j) for A. Furthermore, the prefix (n,m) is called
the size or the dimension of A.

1.4.2 Example
Consider the matrix

A :=


1 7 0
2 −1 2
−3 5 2
−1 0 −8


Let us get acquainted with the new terminology:
(i) What is the dimension of A? It is a (4, 3)-matrix.
(ii) What is A4,2, the (4, 2)-entry of A? This is 0.

Having this new terminology, we focus again on linear equations. Take a
close look at the algorithm we used for finding the solutions. Note that
we always only changed the coefficients of the equations, rather than the
variables (e.g. we never ended with x2x

2
3, from x2, say). So why bother and

carry the variables all the time?? Just focus on the coefficients and proceed
as usual. That is the idea behind the next section.

1.4.3 Definition
Let m,n ∈ N. Consider the system of equations:

a1,1x1 + a1,2x2 + . . . + a1,mxm = b1
a2,1x1 + a2,2x2 + . . . + a2,mxm = b2

...
...

...
an,1x1 + an,2x2 + . . . + an,mxm = bn

with ai,j, bj ∈ R for 1 ≤ i ≤ n, 1 ≤ j ≤ m.
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Then

A =


a1,1 a1,2 . . . a1,m
a2,1 a2,2 . . . a2,m
...

...
an,1 an,2 . . . an,m


is called the coefficient matrix for the system. Note that it is an (n,m)-
matrix.
Furthermore,

B =


a1,1 a1,2 . . . a1,m b1
a2,1 a2,2 . . . a2,m b2
...

...
an,1 an,2 . . . an,m bn


is the augmented matrix for the system. This is an (n,m+1)-matrix. The
augmented matrix B is also denoted by [A | b], where A is the coefficient
matrix and

b =


b1
b2
...
bn

 .
Let us look at a specific example.

1.4.4 Example
Consider the system

2x1 + 3x2 = −1
4x1 + 7x3 = 4

3x2 − x3 = 0

The corresponding augmented matrix is 2 3 0 −1
4 0 7 4
0 3 −3 0


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Just as we did for linear systems, we can define elementary operations on
matrices.

1.4.5 Definition
We define the following elementary row operations on matrices.

(a) Interchange two rows.

(b) Multiply a row by a nonzero constant.

(c) Add a multiple of a row to another.

Two matrices A,B are said to be equivalent if one can be obtained from the
other through a series of elementary row operations. In this case, we write
A ∼ B or A→ B (but we do not write A = B!).

Let us apply some elementary row operations to the matrix in Example 1.4.4.

1.4.6 Example
Let the matrix A be as in example 1.4.4.
Interchanging row 2 and row 3, we get 2 3 0 −1

0 3 −1 0
4 0 7 4


Adding −2 times the first row to the third gives: 2 3 0 −1

0 3 −1 0
0 −6 7 6


Multiply the second row by 2: 2 3 0 −1

0 6 −2 0
0 −6 7 6


And finally adding the second to the third gives: 2 3 0 −1

0 6 −2 0
0 0 5 6


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Note that all these matrices, including the original one from Example 1.4.4
are equivalent.
Let us retrieve the associated linear system to this augmented matrix. It
looks like:

2x1 + 3x2 = −1
6x2 − 2x3 = 0

5x3 = 6

This system is now in triangular form and we can perform backward sub-
stitution to determine the solution set. In particular, we have x3 = 6/5,
x2 = 2(6/5)/6 = 2/5, and x1 = 0.5(−1− 3(2/5)) = −11/10, hence

S = {

 −11/10
2/5
6/5

}
We see that the terminology we introduced for linear systems, can be carried
over to that of augmented matrices.

1.4.7 Definition
A leading term in a row is the leftmost non zero entry of a row. A matrix
is in echelon form, if

(a) Every leading term is in a column to the left of the of the leading term
of the row below it.

(b) All zero rows are at the bottom of the matrix.

A pivot position in a matrix in echelon form is one that consists of a leading
term. The columns containing a pivot position are called pivot columns.
This algorithm, which transforms a given matrix into echelon form, is called
Gaussian elimination.

1.4.8 Remark
(a) Note that the entries in a column that are below a pivot position will
only be zeros.
(b) Also note the difference between systems in echelon form and matrices in
echelon form. For matrices we do allow zero rows. The mere stair pattern is
a criteria for matrices in echelon form. So it might happen that going back
from a matrix in echelon form (which has zero rows) leads to system that is
not in echelon form, unless you delete zero rows or state it to be inconsistent.
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Remember, that we can find a solution to an associated linear system from a
matrix in echelon form by doing backward substitution. But actually, there
is a way to transform a matrix in echelon form even further, so that the
solution set can be read off from a matrix.

1.4.9 Example
Let us continue the example above. We apply a few more elementary row
operations, to obtain a very specific echelon form.
In the example, we ended with 2 3 0 −1

0 6 −2 0
0 0 5 6


Divide each nonzero row by the reciprocal of the pivot, so that we end up
with 1 as leading term in each nonzero row. In our example, we have to
multiply the first row by 1/2, the second by 1/6 and the third by 1/5. This
gives  1 3/2 0 −1/2

0 1 −2/6 0
0 0 1 6/5


Use now elementary row operations to get zeros in the entries above each
pivot position. In our example, we add 2/6 times the last row to the second
row. We get  1 3/2 0 −1/2

0 1 0 2/6
0 0 1 6/5


Now we add −3/2 times the second row to the first row and get 1 0 0 −11/10

0 1 0 2/6
0 0 1 6/5


Let us find the associated linear system.

x1 = −11/10
x2 = 2/6

x3 = 6/5
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By finding this particular matrix form, we are able to just read off the solu-
tion. So, the solution set is

S = {

 −11/10
2/5
6/5

}.
This is, of course, worth a definition.

1.4.10 Definition
A matrix is in reduced echelon form if

(a) It is in echelon form.

(b) All pivot positions have a 1.

(c) The only nonzero term in a pivot column is in the pivot position.

The transformation of a matrix to a matrix in reduced echelon form is called
Gauss-Jordan elimination. Getting to a matrix in echelon form is called
the forward phase, getting from echelon form to reduced echelon form is
called backward phase.

1.4.11 Example
This example is to show how to handle systems with free parameters when
transforming to reduced echelon form. We start with a matrix in reduced
echelon form. (Check that!)  1 0 −2 2

0 1 1 −2
0 0 0 0


The corresponding system is:

x1 − 2x2 = 2
x2 + x3 = −2

We plug in the free parameter s for x3 and get x2 = −2− s and x1 = 2 + 2s,
so that the solution set is

S = {

 2 + 2s
−2− s

s

 , s ∈ R} = {

 2
−2

0

+ s

 2
−1

1

 , s ∈ R}.
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We end this chapter with focussing on which kinds of linear systems we
encounter.

1.4.12 Definition
(a) A linear equation is homogeneous, if it is of the form

a1x1 + a2x2 + . . .+ amxm = 0.

Likewise, a system is called homogeneous, if it has only homogeneous equa-
tions. Otherwise, the system is called inhomogeneous.
(b) The vector 

0
0
0
...
0


is the so called trivial solution to a homogeneous system.

1.4.13 Theorem (!!!)
A system of linear equations has no solution, exactly one solution, or infinitely
many solutions.

Proof: (Proof strategy: Case study) Let A be the transformed matrix,
which we obtained from the augmented matrix, such that A is in echelon
form, we have one of the following three outcomes:
(a) A has a row of the form [0, 0, . . . , 0 | c] for a nonzero constant c. Then
the system must be inconsistent, and hence has no solution.
(b) A has a triangular form, and thus has no free variable. By backward
substitution, we find a unique solution.
(c) A corresponds to a system which is in echelon form but not triangular,
and thus has one or more free variables. This means, that the system has
infinitley many solutions. �

1.4.14 Remark
(a) Note that a homogeneous system is always consistent, because there is
always the trivial solution, which is (0, 0, . . . , 0).
(b) Consider an inhomogeneous system. Assume that the corresponding
augmented matrix has been reduced to echelon form. If this matrix has a
row of the form

[0, 0, 0, . . . , 0 | c]
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for some nonzero constant c, then the system is inconsistent.

Note, that by Remark 1.4.14, we also find at least one solution, which is the
trivial one. By Theorem 1.4.13, we therefore have either one or infinitley
many solutions for homogenous systems.

Applications We will now discuss different applications, where linear sys-
tems are used to tackle the problems.

1.4.15 Example
Consider the following intersections of streets:

A

C B

x 3

0.4

x1

0.3

0.2 0.6

0.3

x
2

0.4

Let us sum up node by node, which traffic volumes occur. The incoming
traffic needs to be equal to the outgoing, so that we get.
At node A we get x2 = 0.4 + x3.
At node B we get x3 + 0.4 + 0.6 = 0.3 + x1.
At node C we get 0.3 + x1 = x2 + 0.2 + 0.4.
We now need to rearrange those linear equations and build up a linear system.

x2 − x3 = 0.4
x1 − x3 = 0.7
x1 − x2 = 0.3

The associated augmented matrix looks like:
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 0 1 −1 0.4
1 0 −1 0.7
1 −1 0 0.3


Let us now perform Gauss-Jordan elimination to obtain the reduced echelon
form.  0 1 −1 0.4

1 0 −1 0.7
1 −1 0 0.3

 ∼

 1 −1 0 0.3
0 1 −1 0.4
1 0 −1 0.7

 ∼

 1 −1 0 0.3
0 1 −1 0.4
0 1 −1 0.4

 ∼

 1 −1 0 0.3
0 1 −1 0.4
0 0 0 0

 ∼

 1 0 −1 0.7
0 1 −1 0.4
0 0 0 0


The corresponding linear system is:

x1 − x3 = 0.7
x2 − x3 = 0.4

We set the free variable x3 equal to the parameter s and thus get after
backward substitution:
x3 = s, x2 = 0.4 + s, x1 = 0.7 + s, so the solution set is

S = {

 0.7
0.4

0

+ s ∈ R≥0

 1
1
1

}.
Note that s must be greater or equal tpo zero in this situation because it
does not make sense in a real world application to have a negative traffic
volume. The minimum travel rate from C to A is therefore 0.4.

1.4.16 Example
When propane burns in oxygen, it produces carbon dioxide and water:

C3H8 + O2 → CO2 + H2O.
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We see, that on the left hand side, there is are eight H-atom, whereas on the
right, there are two. We need to balance the equation, i.e. we are looking for
coefficients x1, x2, x3, x4 in

x1C3H8 + x2O2 → x3CO2 + x4H2O.

Let us go through each kind of atom:
There are 3x1 carbon atoms on the left hand side, and x3 on the left hand
side, so that we get

3x1 = x3.

We have 8x1 hydrogen atoms on the left, and 2x4, hence

8x1 = 2x4.

Further, there are 2x2 oxygen atomes on the left hand side, and 2x3 + x4 on
the right hand side, thus

2x2 = 2x3 + x4.

We thus get the following homogeneous system

3x1 − x3 = 0
8x1 − 2x4 = 0

2x2 − 2x3 − x4 = 0

The associated augmented matrix is 3 0 −1 0 0
8 0 0 −2 0
0 2 −2 −1 0

 ∼

 3 0 −1 0 0
0 0 8 −6 0
0 2 −2 −1 0


 3 0 −1 0 0

0 2 −2 −1 0
0 0 8 −6 0

 ∼

 1 0 −1/3 0 0
0 1 −1 −1/2 0
0 0 1 −3/4 0


 1 0 0 −1/4 0

0 1 0 −5/4 0
0 0 1 −3/4 0


The corresponding system is

x1 − 1/4x4 = 0
x2 − 5/4x4 = 0

x3 − 3/4x4 = 0
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We set x4 = s and get x3 = 3/4s, x2 = 5/4s and x1 = 1/4s. As we are
not looking for the whole solution set, but rather for coefficients, so that the
balance is right, we choose s = 4 (we want natural numbers as coefficients),
so that

C3H8 + 5O2 → 3CO2 + 4H2O.

1.4.17 Example
We are looking for the coefficients of a polynomial of degree 2, on which the
points (0,−1), (1,−1), and (−1, 3) lie, i.e. we need to find a, b, c in

f(x) = ax2 + bx+ c.

Plugging in the x-values of the points, we get

c = −1
a + b + c = −1
a − b + c = 3

This gives 0 0 1 −1
1 1 1 −1
1 −1 1 3

 ∼

 1 1 1 −1
1 −1 1 3
0 0 1 −1

 ∼

 1 1 1 −1
0 −2 0 4
0 0 1 −1


 1 1 1 −1

0 1 0 −2
0 0 1 −1

 ∼

 1 1 0 0
0 1 0 −2
0 0 1 −1

 ∼

 1 0 0 2
0 1 0 −2
0 0 1 −1


The solution to this system is a = 2, b = −2, c = −1. This gives us

f(x) = 2x2 − 2x− 1.
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Chapter 2

Euclidean Space

2.1 Vectors

Have a look at the ingredients of milk with 2% milkfat. It says, that there
are 5g fat, 13g carbs, and 8g protein in a cup (240ml). How could we display
this information? We arrange the values in a (3, 1)-matrix in the following
way.  5

13
8

 ,
where the first row represents fat, the secod carbs, and the third protein.
This representation is called a vector. If you are interested in the amount
of fat, carbs, and protein in 1200ml, say, then all you do is multiply each
entry by 5. How can we display that? Remember, that the less unnecessary
information you use, the more you keep the clear view. We therefore define

5

 5
13
8

 :=

 5 · 5
5 · 13
5 · 8

 =

 25
65
40


Drinking that amount of milk means taking 25g fat, 65g carbs and 40g protein
in. This is a new kind of product, namely the product of a scalar with a
vector.
The ingredient vector for whole milk is 8

12
8

 .
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If you drink one cup of 2% milk and one cup of whole milk, you will have
ingested 5g + 8g fat, 13g + 12g carbs and 8g + 8g protein. How can we
represent that? Just add the vectors: 5

12
8

+

 8
12
8

 =

 5 + 8
12 + 12
8 + 8

 .
The idea behind this concept will lead to a whole new terminology, even a
new and mathematically very rich structure.

2.1.1 Definition
A vector over R with n components is an ordered list of real numbers
u1, u2, . . . , un, displayed as

u =


u1
u2
...
un


or as

u = [u1, u2, . . . , un].

The set of all vectors with n entries is denoted by Rn. Each entry ui is called
a component of the vector. A vector displayed in vertical form is called a
column vector, a vector displayed in row form is called a row vector.

Remember what we did with vectors in our examples? We wrap a definition
around that, because the concepts are very important and easy to generalize
to so called vector spaces, which we will encounter later.

2.1.2 Definition
Let u,v be vectors in Rn given by

u =


u1
u2
...
un

 and v =


v1
v2
...
vn


Suppose that c is a real number. In the context of vectors, c is called a
scalar. We then have the following operations:
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Equality: u = v if and only if u1 = v1, u2 = v2, . . . , un = vn.

Addition: u + v =


u1
u2
...
un

+


v1
v2
...
vn

 =


u1 + v1
u2 + v2

...
un + vn



Scalar Multiplication: cu = c


u1
u2
...
un

 =


cu1
cu2

...
cun


The zero vector 0 ∈ Rn is the vector, whose entries are all 0. Moreover, we
define −u := (−1)u. The set of all vectors of Rn, together with addition and
scalar multiplication, is called a Euclidean Space.

2.1.3 Example
Let

u =


2
−1

0
5


and

v =


1
9
2
1

 .
Compute 2u− 3v.

2u− 3v = 2


2
−1

0
5

− 3


1
9
2
1

 =


4
−2

0
10

−


3
27
6
3

 =


1

−29
−6

7

 .
Let us now analyze the structure we have in a very abstract and mathemat-
ical way. What we do is generalize properties of one structure to another.
Think about what we do, when we add vectors. In words, it is just adding
componentwise. But adding componentswise is adding two numbers, just the
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way we are used to. Each property we are used to with ordinary addition,
just carry over to vectors! Let’s get more concrete:

2.1.4 Theorem (Algebraic Properties of Vectors)
Let a, b be scalars (i.e. real numbers) and u,v, and w be vectors in Rn. Then
the following holds:

(a) u + v = v + u.

(b) a(u + v) = au + av.

(c) (a+ b)u = au + bu.

(d) (u + v) + w = u + (v + w).

(e) a(bu) = (ab)u.

(f) u + (−u) = 0.

(g) u + 0 = 0 + u.

(h) 1u = u.

Proof: Let

u =


u1
u2
...
un

 and v =


v1
v2
...
vn

 .
Then

u+v =


u1
u2
...
un

+


v1
v2
...
vn

 =


u1 + v1
u2 + v2

...
un + vn

 =


v1 + u1
v2 + u2

...
vn + un

 =


v1
v2
...
vn

+


u1
u2
...
un

 = v+u.

This proves (a).
For (b) consider

a(u+v) = a


u1 + v1
u2 + v2

...
un + v2

 =


a(u1 + v1)
a(u2 + v2)

...
a(un + vn)

 =


au1 + av1
au2 + av2

...
aun + av2

 = a


u1
u2
...
un

+a


v1
v2
...
vn

 = au+av.
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Try the remaining ones as extra practice! �
Adding multiples of different vectors will be an important concept, so that
it gets is own name.

2.1.5 Definition
Let u1,u2, . . . ,um be vectors, and c1, c2, . . . , cm be scalars. We then call

c1u1 + c2u2 + . . .+ cmum

a linear combination of (the given) vectors. Note, that we do not exclude
the case, that some (or all) scalars are zero.

2.1.6 Example
(a) What can we obtain when we linear combine ‘one’ vector? Let’s plug in
the definition. Let u be a vector in Rn. Then

au

with a in R is by Definition 2.1.5 a linear combination of u. What if a = 1?
This tells us that u is a linear combination of u! For a = 0, we see, that 0 is
a linear combination of u!
(b) Let

e1 =

 1
0
0

 , e2 =

 0
1
0

 , e3 =

 0
0
1


be three vectors in R3. Then

3e1 − 1e2 + 2e3 =

 3
−1

1


is a linear combination of e1, e2, e3.

2.1.7 Example
Remember our milk example from the beginning of this chapter. We had
2%-fat milk whose ingredients could be displayed as 5

13
8


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and the whole milk ingredients,  8
12
8

 .
How much of each kind of milk do I have to drink, to ingest 3g of fat, 19/3g
of carbs and 4g of protein?
What are we looking for? We need to find the amount x1 of 2%-fat milk
and the amount x2 of whole milk so that the given amounts of fat, carbs and
protein are ingested. When finding the combined ingredients, we introduced
adding to vectors, so we do the same here: We want the following to be true:

x1

 5
13
8

+ x2

 8
12
8

 =

 3
19/3

4

 .
This must be true in each row, so let us write it down row wise or component
wise.

5x1 + 8x2 = 3
13x1 + 12x2 = 19/3
8x1 + 8x2 = 4

This is a linear system! Let us find the corresponding augmented matrix:

 5 8 3
13 12 19/3
8 8 4

 ∼

 5 8 3
0 −44 −22/3
0 −24 −4



∼

 5 8 3
0 1 1/6
0 1 1/6

 ∼

 5 0 10/6
0 1 1/6
0 −24 −4

 ∼

 1 0 1/3
0 1 1/6
0 0 0


So the solution is x1 = 1/3 and x2 = 1/6. In context, this means, that we
need to drink 1/3 cup of 2% fat-milk and 1/6 cup of whole milk to ingest the
desired amounts.
As solution we therefore have[

x1
x2

]
= x =

[
1/3
1/6

]
.
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To finish this section, let us define a new operation between a matrix and a
vector. This is a new product.

2.1.8 Definition (Matrix-Vector-Product)
Let a1, a2, . . . , am be vectors in Rn. If

A =
[

a1 a2 . . . am

]
and x =


x1
x2
...
xm

 .
Then the matrix-vector product between A and x is defined to be

Ax = x1a1 + x2a2 + . . .+ xmam.

2.1.9 Remark
(a) The product is only defined, if the number of columns of A equals the
number of components of x. In the definition above, this means that x must
be an element from Rm.
(b) Have a second look at the Definition 2.3.2 of the span. Compare this
with the definition of the matrix-vector product of Definition 2.1.8. We
notice the IMPORTANT fact, that the result of a matrix-vector product is
in fact a linear combination of the columns of the matrix!!! In other words,
any product A · b for an (m,n)-matrix A and a vector b ∈ Rn lies in the
span of the columns of A.

2.1.10 Example
Find A,x and b, so that the equation Ax = b corresponds to the system of
equations

4x1 − 3x2 + 7x3 − x4 = 13
−x1 + 2x2 + 6x4 = −2

x2 − 3x3 − 5x4 = 29

First we collect coefficients: 4 −3 7 −1
−1 2 0 6

0 1 −3 −5


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Then we collect variables:

x =


x1
x2
x3
x4


Finally collect the values on the right hand side of the equality sign.

b =

 13
−2
29


-Put on table three equivalent ways of displaying a linear system.
We will soon see a proof for a theorem that is very elegant just because
we are now able to use this new representation of linear systems with the
matrix-vector product. Let usexplore an example:
Even though we treated homogeneous and inhomogeneous systems as being
very different, we are about to discover, that they are very much related.

2.1.11 Example
Consider the following example for a homogeneous (blue column) and inho-
mogenous (red column) system, written in matrix form: 2 −6 −1 8 0 7

1 −3 −1 6 0 6
−1 3 −1 2 0 4

 ∼

 2 −6 −1 8 0 7
0 0 1 −4 0 −5
0 0 −3 12 0 15

 ∼

 2 −6 −1 8 0 7
0 0 1 −4 0 −5
0 0 0 0 0 0

 ∼

 2 −6 0 4 0 2
0 0 1 −4 0 −5
0 0 0 0 0 0

 ∼

 1 −3 0 2 0 1
0 0 1 −4 0 −5
0 0 0 0 0 0


We set the free variables x4 := t1 and x2 := t2 and obtain as solution set for
the respective systems

Sh = {s1


3
1
0
0

+ s2


−2

0
4
1

 | t1, t2 ∈ R}
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Si = {


1
0
−5

0

+ s1


3
1
0
0

+ s2


−2

0
4
1

 | t1, t2 ∈ R}.

Compare those sets, what do we note? The set ’differ’ only by the constant
vector 

1
0
−5

0

 .
This phenomenon can be proven and is very helpful for computations.

Now we are ready to state and proof the relationship between homogeneous
and inhomogeneous systems:

2.1.12 Theorem
Let xp be one arbitrary solution to a linear system of the form

Ax = b.

Then all solutions xg to this system are of the form

xg = xp + xh,

where xh is a solution to the associated homogeneous system Ax = 0.

Proof: Let xg be any solution to the system. We must prove, that xg can
be written as proposed. To do so, we first consider the vector xg − xp. We
have by Lemma the distributeive property (here without proof)

A(xg − xp) = Axg − Axp = b− b = 0.

From this, we conclude, that xg − xp is a solution xh to the associated
homogeneous system, so that we can write

xg − xp = xh.

Solving the last equation for xg, gives us xg = xp + xh. �
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2.2 Geometry of Rn

We are dealing with vectors over Rn. This set is equipped with a huge package
of additional properties. One of these properties - at least for n = 1, 2, 3 - is
that it allows a geometric interpretation of vectors, addition of vectors, and
scalar multiplication. Let us investigate R2.

A vector

[
x1
x2

]
of R2 can be understood as an arrow from the origin to the

point (x1, x2).

[
2
4

]

[
1

−1

]
-1

1 2 3 4 5-1-2-3-4-5

1

2

3

4

5

It is now clear, that a length can be attached to a vector in Rn. Good old

Pythagoras shows that if u =

[
2
4

]
, its length |u| in the plane is given by

|u| =
√

22 + 42 =
√

20.

2.2.1 Definition (Length of a vector)
Let

u =


u1
u2

...
un


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be a vecotr in Rn. Then the Length |u| of u is defined to be

|u| =
√
u21 + u22 + . . .+ u2n.

How is adding vectors being reflected in the picture? We move one of the
two vectors without changing direction or length, such that the tip of the
other vector touches the tail of the moved vector. The result, i.e. the sum of
the two vectors starts in the origin and ends at the tip of the moved vector.

[
2
4

]

[
1

−1

]

[
3
3

]

-1

1 2 3 4 5-1-2-3-4-5

1

2

3

4

5

Let us finish this section with visualizing, what scalar mulitplication means.
Let u be a vector in Rn and let c ∈ R. Then we have
(a) If c = 0, then cu = 0, just a point in the origin.
(b) If c > 0, then cu points into the same direction as u, and its length is
the length of u multiplied by c.
(c) If c < 0, then cu points into the opposite direction as u, and its length is
the length of u multiplied by |c|.
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[
2
4

]

0.5

[
2
4

]

[
1

−1

]

−
[

1
−1

]

(−2)

[
1

−1

]

-1

1 2 3 4 5-1-2-3-4-5

1

2

3

4

5

2.3 Span

2.3.1 Example
Consider the following two vectors

u =

 2
−1

1

 , v =

 1
−1

0

 and w =

 3
4
0


We aim at answering the following question. Is w a linear combination of
u,v, i.e. is there a solution to

x1u + x2v = w?

Let’s do the computation.
We like to find a solution to 2x1

−x1
x1

+

 x2
−x2
0x2

 =

 3
4
0


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The corresponding linear system is

2x1 + x2 = 3
−x1 − x2 = 4
x1 = 0

The associated augmented matrix is 2 1 3
−1 −1 4

1 0 0

 ∼

 1 0 0
2 1 3
−1 −1 4


 1 0 0

0 1 3
0 −1 4

 ∼

 1 0 0
0 1 3
0 0 7


The last row of the matrix reveals a contradiction. So the answer must be:
No matter which combination of u and w you consider, you will never reach
the desired one.

The previous example immediately raises the following question: How can we
describe the set of all linear combinations of a set of given vectors? How can
one determine, if the set of all linear combinations of a given set of vectors
in Rn is the whole of Rn? We will investigate this kind of questions in this
section.

2.3.2 Definition (Span)
Let {u1,u2, . . . ,um} be a set of vectors in Rn. The span of this set is
denoted by span{u1,u2, . . . ,um}, and is defined to be the set of all linear
combinations

s1u1 + s2u2 + . . .+ smum,

where s1, s2, . . . , sm can be any real numbers. If span{u1,u2, . . .um} = Rn,
we say that {u1,u2, . . .um}spans Rn.

2.3.3 Example
(a) Let u = 0 ∈ Rn. Then

span{u} = {a0 | a ∈ R} = {0}

is a set with only one element.
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(b) Let u 6= 0 ∈ Rn. Then

span{u} = {au | a ∈ R}

is a set with infinitely many elements. Have a look back at the geometric
interpretation on a ·u. This shows that span{u} is a line through the origin.

Just by following Example 2.3.1, we can generally pose the following theorem:

2.3.4 Theorem
Let u1,u2, . . . ,um and w be vectors in Rn.
Then w is an element of span{u1,u2, . . . ,um}, if and only if the linear system
represented by the augmented matrix[

u1 u2 . . . um w
]

has a solution.

Proof: Let us plug in the definition of v being an element of the set
span{u1,u2, . . . ,um}:
w ∈ span{u1,u2, . . . ,um} if and only if there are scalars s1, s2, . . . , sm, such
that

s1u1 + s2u2 + . . .+ smum = w.

But this is true, if and only if (s1, s2, . . . , sm) is a solution to the system
represented by [

u1 u2 . . . um w
]

This is what we wanted to show. �

2.3.5 Example
Is  0

−2
8


an element of

span{

 −1
−1
−3

 ,
 1

3
−5

 ,
 1

2
−1

}?
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Consider the following augmented matrix representing a linear system: 1 1 −1 0
2 3 −1 −2
−1 −5 −3 8

 →

 1 1 −1 0
0 1 1 −2
0 −4 −4 8


 1 1 −1 0

0 1 1 −2
0 0 0 0

 →

 1 0 −2 2
0 1 1 −2
0 0 0 0


Let us translate that back to a linear system.

x1 = 2 + 2s
x2 = −2 − s
x3 = s

In vector form, this solution set can be written as

S = {x =

 x1
x2
x3

 =

 2
−2

0

+ s

 2
−1

1

 |s ∈ R}.

It seems that sometimes, one could take out an element from a set S :=
{u1,u2, . . .um} of vectors in Rn and still obtain the same span. Which
properties do such elements have? Here is the answer:

2.3.6 Theorem
Let u1,u2, . . . ,um and u be vectors in Rn. If u is in span{u1,u2, . . . ,um},
then

span{u,u1,u2, . . . ,um} = span{u1,u2, . . . ,um}.
One could also say, that u is redundant in span{u1,u2, . . . ,um}.

Proof: Whenever we want to show equality of two sets, we do that by
showing that one set is contained in the other and vice versa. To that end,
let S0 := span{u,u1,u2, . . . ,um} and S1 := span{u1,u2, . . . ,um}. So let us
first show S1 ⊆ S0. Let v be any element in S1. Then there are scalars
a1, a2, . . . , am, such that v = a1u1 + a2u2 + . . . + amum. This sum can also
be written as v = 0u + a1u1 + a2u2 + . . .+ amum, so that v lies in S0.
Let us now show that S0 ⊆ S1. Fix w ∈ S0, so there are scalars, b0, b1, b2 . . . , bm
such that

w = b0u + b1u1 + b2u2 + . . .+ bmum.
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Remember, that we also assumed that u is an element of S1. That means,
that there are scalars c1, c2, . . . , cm such that

u = c1u1 + c2u2 + . . .+ cmum.

Let us plug in this representation of u in the representation of w. We then
get

w = b0(c1u1 + c2u2 + . . .+ cmum) + b1u1 + b2u2 + . . .+ bmum.

Apply the distributive property and rearrange that expression, so that you
get

w = (b0c1 + b1)u1 + (b0c2 + b2)u2 + . . .+ (b0cm + bm)um.

Now have a look at the previous equation. This is a linear combination of
the vectors {u1,u2, . . . ,um}, hence it lies in S1!
Now we have shown S0 ⊆ S1 and S1 ⊆ S0, hence those two sets are equal.

�
We are still exploring, what one can say about span{u1,u2, . . . ,um}, in par-
ticular exploring what a certain choice of vectors reveals about their span.

2.3.7 Theorem
Let S := {u1,u2, . . . ,um} be a set of vectors in Rn. If m < n, then this set
does not span Rn. If m ≥ n, then the set might span Rn or it might not. If
not, we cannot say more without additional information about the vectors.

Proof: Let a be any vector in Rn. Let us check, what we need to generate
this vector with elements of S. By Theorem 2.3.4 his means, looking at the
system, whose augmented matrix looks like that:

A =
[

u1 u2 . . . um a
]
.

What do we usually do, when handling an augmented matrix? We aim for
echelon form! Imagine, we did that for A. We then end up with an equivalent
matrix of the form 

1 ? . . . ? a1
0 1 ? ? a2
...

. . . . . .
...

0 0 0 0 an

 .
The important thing to understand is, that because m < n, we will get at
least one zero row. If you choose a smartly, such that after getting to the
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echelon form, you have am 6= 0, you will have created an inconsistent system.
In our setting, an inconsistent system means finding no solution to generating
a with elements of S. But this means, that there are vectors in Rn which
do not lie in the span S. If m ≥ n, then the matrix in echelon form may
represent either a matrix with zero rows or not. If there are zero rows, we
always find vectors a, such that the associated system becomes inconsistent.
If not, we always find solutions, hence the span is Rn. �

2.3.8 Example
Is

span{

 1
−1

1

 ,
 −2

2
0

 ,
 0

0
−3

 ,
 3
−3

2

} = R3?

If that were true, any vector [a1, a2, a3]
t of R3 would have to be a linear

combination of the given vectors. We make use of Theorem 2.3.4 and solve
the following system: 1 −2 0 3 a1

−1 2 0 −3 a2
1 0 −3 2 a3

 →

 1 −2 0 −3 a1
0 0 0 0 a1 + a2
0 2 −3 −1 −a1 + a3


 1 −2 0 −3 a1

0 2 −3 −1 −a1 + a3
0 0 0 0 a1 + a2


The last row of the matrix reveals a contradiction. Whenever you choose a
vector in R3 such that a1 + a3 6= 0, you will not be able to linear combine
the given vectors to that one. In particular, they cannot span the whole R3.

2.3.9 Remark (!!)
If you follow the previous example, you see that the considering the equivalent
matrix in echelon form actually presented an understanding of whether there
is a solution or not. So, whenever you are actually computing the span,
go over to echelon form and look for rows which have only zero entries. If
there are any, then you’ll instantly know, that not the whole of Rn can be
spanned, because there will be choices for vectors which have nonzero entries
at precisely those rows.

To summarize the previous results ang get a wider perspective, let us collect
the following equivalences.
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2.3.10 Theorem
Let a1, a2, . . . , am and b be vectors in Rn. Then the following statements are
equivalent:
(a) The vector b is in span{a1, a2, . . . , am}.
(b) The vector equation x1a1 + x2a2 + . . . + xmam = b has at least one
solution.
(c) The linear system corresponding to

[
a1 a2 . . . am b

]
has at least

one solution.
(d) The equation Ax = b with A and x given as in Definition 2.1.8, has at
least one solution.

Proof: (a) ⇐⇒ (c): This is Theorem 2.3.4
(b) ⇐⇒ (a): This is rewriting system in augmented matrix form to linear
equation form.
(c) ⇐⇒ (d): This is Definition 2.1.8. �

2.3.11 Problem
Here is some more for you to practice:

(a) Do u1 =

[
3
2

]
and u2 =

[
5
3

]
span R2?

(b) Find a vector in R3 that is not in

span{

 2
−1

4

 ,
 0

3
−2

}.
How do you know a priori, that such a vector must exist?
(c) Find all values of h, such that the set of vectors {u1,u2,u3} spans R3,
where

u1 =

 1
2
−3

 , u2 =

 0
h
1

 , u3 =

 −3
2
1


(d) Determine, if the equation Ax = b has a solution for any choice of b,
where

A =

 1 0 −2
2 1 2
2 1 3

 .
Do the same for

A =

[
1 3
−2 −6

]
.
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2.4 Linear Independence

The previous section and this section are central key parts in this course.
Before those sections, we learned how to solve linear equation and how to
interpret equivalent systems/matrices in terms of the solution set. I therefore
understand those sections as providing strong tools within linear algebra. But
these current sections actually investigate the essence of linear algebra and
deal with fundamental concepts.
Let us assume that we are given three vectors u1,u2,u3, such that

u3 = 2u1 − u2.

We can solve these equations for the other vectors as well:

u1 = 1/2u2 + 1/2u3 or u2 = u1 − u3 .

We see, that the representation of one of the vectors depends on the other
two. Another way of seeing this, is - because the equations are equivalent to

2u1 − u2 − u3 = 0,

- is that the system
c1u1 + c2u2 + c3u3 = 0

has the non trivial solution (2,−1,−1). This is exactly the idea behind linear
dependence/independence:

2.4.1 Definition (!!Linear Independence)
Let {u1,u2, . . . ,um} be a set of vectors in Rn. If the only solution to the
vector equation

x1u1 + x2u2 + . . .+ xmum = 0

is the trivial solution given by x1 = x2 = . . . = xm = 0, then the set
{u1,u2, . . . ,um} is linearly independent. If there are non trivial solutions,
then the set is linearly dependent.

2.4.2 Remark
(a) Note that the definition is very abstract: It is based on the absence of
non trivial solutions.
(b) When are two vectors u1,u2 linearly (in-)dependent? There are two cases
to discuss:
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(i) At least one of the vectors is the zero vector. Let u1 = 0. Then 1·0+0·u2 =
0. Compare that with the definition of linear independence. It fits then
negation of that definition! This is because x1 = 1, x2 = 0 is not the trivial
solution. So these two vectors are linearly dependent and we can write the
equation above as u1 = 0u2.
(ii) Neither vector is the zero vector. Let us assume that they are linearly
dependent. Then there are scalars c1, c2 not equal to 0 (assume one is zero
and you will see that then at least one of the vectors must be the zero vector),
such that

c1u1 + c2u2 = 0.

So we can solve for u1 or u2. Let us solve for u1, so that we get

u1 = c2/c1u2.

How can we interpret this last equation: Two vectors are linearly dependent,
whenever one vector is a multiple (here the factor is c2/c1) of the other.
(c) One single vector u 6= 0 is linearly independent. We see that by plugging
in the definition for linear independence for one vector:

cu = 0

has only c = 0 as solution, as we assume that u 6= 0. In other words,
this equation has only the trivial solution c = 0, which makes it linearly
independent.
(d) A different view on linear independence is to ask whether the zero vector
is a non-trivial linear combination of the given vectors. So actually, we are
dealing with questions about the span. Make use of Theorem 2.3.4 to get
the following theorem!

2.4.3 Lemma
Let S := {u1,u2, . . . ,um} be a set of vectors in Rn. Consider the system for
determining if this set is linearly independent. Set

A =
[

u1 u2 . . . um

]
,x =


x1
x2
...
xm

 .
Then S is linearly independent, if and only if the homogeneous linear system
Ax = 0 has only the trivial solution.
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2.4.4 Example
When you need to determine if a set of vectors is linearly independent or
not, you usually just do, what the definition of linear independence says:
You solve the associated system: Let us do this with a concrete example:
Let

u1 =


−1

4
−2
−3

 , u2 =


3

−13
7
7

 , u3 =


−2

1
9
−5

 .
So let us solve the system

x1u1 + x2u2 + x3u3 = 0.

The augmented matrix corresponding to that system is
−1 3 −2 0

4 −13 1 0
−2 7 9 0
−3 7 −5 0

 ∼


−1 3 −2 0

0 −1 −7 0
0 1 13 0
0 −2 1 0



−1 3 −2 0

0 −1 −7 0
0 0 6 0
0 0 15 0

 ∼


−1 3 −2 0

0 −1 −7 0
0 0 6 0
0 0 −13 0



−1 3 −2 0

0 −1 −7 0
0 0 6 0
0 0 0 0


Back substitution now shows, that the unique solution is the trivial solution
x1 = x2 = x3 = 0. Therefore, the u1,u2,u3 are linearly independent.

2.4.5 Theorem
Let S := {0,u1,u2, . . . ,um} be a set of vectors in Rn. Then the set is linearly
dependent.

Proof: Let us just plug in the definition for linear independence, that is,
determine the solutions for

x00 + x1u1 + . . .+ um = 0.
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We are looking for non trivial solutions. Observe, that x00 = 0 for any x0. So
why not suggesting (1, 0, 0, . . . , 0) as solution. It works and it is non trivial.
So, the system has a non trivial solution, hence it is linearly dependent. �

2.4.6 Example
Consider

u1 =

 16
2
8

 u2 =

 22
4
4

 u3 =

 18
0
4

 u4 =

 18
2
6


Are these vectors linearly independent?
We set up the equation for testing linear independence. 16 22 18 18 0

2 4 0 2 0
8 4 4 6 0

→
 8 11 9 9 0

0 −5 9 1 0
0 0 4 1 0


There is at least one free variable, which means for homogeneous systems
that there is not only the trivial solution. We therefore conclude that the
vectors are linearly dependent.

We find in this example one situation, when we actually know that a set is
linearly independent without solving a system:

2.4.7 Theorem
Suppose that {u1,u2, . . . ,um} is a set of vectors in Rn. If n < m, then the
set is linearly dependent.

Proof: Consider the system x1u1 + x2u2 + . . . + xmum = 0. As this is
an homogeneous system, we will not get any inconsistency. Because of the
assumption, this system has less rows than columns. Hence, there must be
free variables, thus infinitely many solutions. In particular, the system does
not only have the trivial solution, hence the vectors are linearly dependent.

�
Let us now make a connection between ’span’ and ’linear independence’.

2.4.8 Theorem
Let {u1,u2, . . . ,un} be a set of vectors in Rn. Then the set is linearly depen-
dent, if and only if one of the vectors in the set is in the span of the other
vectors.
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Proof: Suppose, the set is linearly dependent. Then there exist scalars
c1, c2, . . . , cm, not all zero, such that

c1u1 + c2u2 + . . .+ cmum = 0.

Note that this is the equation for linear independence. Without loss of gen-
erality, let us assume that c1 6= 0. Then solve the equation for u1, to get

u1 = −c2
c1

u2 − . . .−
cm
c1

um.

This is an expression which shows that u1 is a linear combination of the
others. Hence, u1 is in the span of {u2, . . . ,um}. Therefore, the ’forward’
direction of the assertion is true.
Let us now suppose that one of the vectors is in the span of the remaining
vectors. Again, without loss of generality we assume that u1 is in the span
of {u2, . . . ,um}. Hence, there are scalars b2, b3, . . . , bm, such that

u1 = b2u2 + . . .+ bmum.

This equation is equivalent to

u1 − b2u2 − . . .− bmum = 0.

Note that u1 has 1 as coefficient, so we see that the zero vector is a non trivial
linear combination of the vectors, which means by definition, that they are
linearly dependent. This shows the ’backward direction’. �

2.4.9 Remark
Note that the previous theorem does not mean, that every vector in a linearly
dependent set must be a linear combination of the others. There is just at
least one that is a linear combination of the others.

We can collect the previous theorems, reinterpret them and summarize as
follows:

2.4.10 Theorem
Let a1, a2, . . . , am and b be vectors in Rn. Then the following statements are
equivalent.
(a) The set {a1, a2, . . . , am} is linearly independent.
(b) The vector equation x1a1 + x2x2 + . . . + xmam = b has at most one
solution.
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(c) The linear system corresponding to
[

a1 a2 . . . am b
]

has at most
one solution.
(d) The equation Ax = b with

[
a1 a2 . . . am

]
has at most one solution.

Proof: (b) ⇐⇒ (c) ⇐⇒ (d) is obvious, because it is just rewriting linear
systems in equation-/ matrix-form.
So we need to proof that from (a), (b) follows and vice versa. Let us assume
that (a) is true and then show that (b) is true. To that end, we assume the
contrary and lead that to a contradiction. So assume, that x1a1 + x2x2 +
. . .+xmam = b has more than one solution. We pick two different solutions,
(r1, r2, . . . , rm) and (s1, s2, . . . , sm), so that

r1a1 + r2a2 + . . .+ rmam = b

s1a1 + s2a2 + . . .+ smam = b

Thus, we have

r1a1 + r2a2 + . . .+ rmam = s1a1 + s2a2 + . . .+ smam,

and hence

(r1 − s1)a1 + (r2 − s2)a2 . . .+ (rm − sm)am = 0.

Without loss of generality, we may assume that r1 6= s1, so that we see,
that there is a non trivial linear combination of the zero vector. But by
assumption, a1, a2, . . . , am are linearly independent, which gives us the con-
tradiction. Therefore, the assumption in the number of solutions must have
been wrong.
Let us now assume (b) and show that (a) holds. Choose b = 0. As (b) holds,
we know that x1a1 + x2x2 + . . . + xmam = 0 has at most one solution. As
the trivial solution is already one, there cannot be another solution, which
gives us per definition the linear independence of the vectors. �

2.4.11 Theorem (!THE BIG THEOREM!)
Let A = {a1, a2, . . . , an} be a set of n vectors in Rn. (Note that this time we
have the same number n of vectors and entries in a column.) Furthermore,
let A =

[
a1 a2 . . . an

]
. Then the following are equivalent:

(a) A spans Rn.
(b) A is linearly independent.
(c) Ax = b has a unique solution for all b in Rn
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Proof: First we show, that (a) ⇐⇒ (b). If A is linearly dependent, then
without loss of generality, a1 is a linear combination of the remaining vectors
in A by Theorem 2.4.8. Hence, by Theorem 2.4.8, we have

span{a1, a2, . . . , an} = span{a2, . . . , an}.

By assumption (a), we have

span{a2, . . . , an} = Rn,

which is a contradiction to Theorem 2.3.7. Therefore, the assumption about
A being linearly dependent must be wrong, and hence (a) ⇒ (b).
For (b)⇐ (a), we may assume that A is linearly independent. If A does not
span Rn, we find a vector a, which is not a linear combinations of vectors inA.
Therefore, Theorem 2.4.8 applies, and {a, a1, . . . , an} is linearly independent.
But these are n + 1 linearly independent vectors in Rn, which cannot be by
Theorem 2.4.7, this is a contradiction. Hence (a) → (b).
We now show, that (a) ⇒ (c). Note, as we have already shown (a) ⇒ (b),
that we can use (a) and (b). By Theorem 2.3.10(a), we now, that Ax = b
has at least one solution for every b in Rn. But Theorem 2.4.10(b), implies,
that Ax = b has at most one solution. Hence, there is exactly one solution
to the equation.
Finally, it remains to show (c) ⇒ (a). So let (c) be true, so that there is a
unique solution to every vector in Rn. But this is just saying that any vector
of Rn lies in the span of A, hence (a) is true. �
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Chapter 3

Matrices

3.1 Linear Transformations

So far we have always fixed a natural number n and then moved around
within Rn. We never passed a bridge from Rn to Rm, say. But with what
we are going to explore in this chapter, this will be possible. We will learn
that certain functions will allow us to go from one vector space to another
without losing too much structure.

3.1.1 Definition ((Co)-Domain, Image, Range, Linear Transformation/Homomorphism)
Let T : Rm → Rn be a function, that takes a vector of Rm as input and
produces a vector in Rn as output. We then say, that Rm is the domain of
T and Rn is the codomain of T . For u ∈ Rm, we call T (u) the image of
u under T . The set of the images of all vectors in the domain is called the
range of T . Note that the range is a subset of the codomain.
A function T : Rm → Rn is a linear transformation, or a linear homo-
morphism, if for all vectors u and v in Rm, and all scalars c, the following
holds:
(a) T (u + v) = T (u) + T (v).
(b) T (cu) = cT (u).

3.1.2 Example
Check if the following functions are linear homomorphism.

(a) T1 : R1 → R2, [u] 7→
[

u
−3u

]
.
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Let us check the first condition. We need to take to vectors [u1], [u2] ∈ R
and see if the function respects addition.

T1([u1+u2]) =

[
u1 + u2

−3(u1 + u2)

]
=

[
u1
−3u1

]
+

[
u2
−3u2

]
= T1([u1]+T1([u2])).

Let us check the second condition. Let c ∈ R be a scalar and let [u] ∈ R1.

T1(c[u]) = T1[cu] =

[
cu

−3(cu)

]
= c

[
u
−3u

]
= cT1([u]).

Both condition are satisfied, T1 is a linear homomorphism.
(b) T2 : Rn → Rm,u 7→ 0.
Let us check the conditions.

T2(u1 + u2) = 0 = 0 + 0 = T2(u1) + T2(u2).

Finally

cT2(u) = c0 = 0 = T2(cu),

hence this is also a linear homomorphism.
(c) T3 : R2 → R2, [u1, u2]

t 7→ [u21, u
2
2]

t.
We know by the binomial equations that squaring does not preserve addition.
So we are already expecting that the first condition will be violated.
Check the following vectors out:

T3(

[
2
3

]
+

[
4
4

]
) = T3(

[
6
7

]
) =

[
36
49

]
,

but

T3(

[
2
3

]
) + T3(

[
4
4

]
) =

[
4
9

]
+

[
16
16

]
=

[
25
32

]
.

We can stop here because the first condition is not satisfied and we can
already conclude that T3 is not a linear homomorphism.

(d) T4 : R2 → R2, [u1, u2]
t 7→

[
u1 + u2

1

]
.

Let us check the first condition.

T4(

[
2
2

]
+

[
2
2

]
) = T4(

[
4
4

]
) =

[
4
1

]
,
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but

T4(

[
2
2

]
) + T4(

[
2
2

]
) =

[
2
1

]
+

[
2
1

]
=

[
4
2

]
and hence it is not a linear homomorphism.
But check that it is in fact a homomorphism if we map the second component
to 0 instead of 1.

Domain Codomain

(a) not injective, not surjective
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Domain Codomain

(b) injective, not surjective

Domain Codomain

(c) not injective, surjective
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Domain Codomain

(d) injective, surjective

3.1.3 Definition (Injective/Surjective Homomorphism)
Let T : Rm → Rn be a linear homomorphism.
(a) T is called injective or one-to-one, if for every vector w in Rn there
exists at most one vector u in Rm such that T (u) = w.
(b) T is called a surjective homomorphism or onto, if for every vector
w in Rn, there exists at least one vector u in Rm, such that T (u) = w.
(c) T is called an isomorphism or bijective, if it is injective and surjective.

3.1.4 Lemma
Let T : Rm → Rn be a linear homomorphism. Then T is injective, if and
only if T (u) = T (v) implies that u = v.

Proof: Put w := T (u). If T is injective, then u and v both are mapped to
the same image, hence they must be equal by the definition of injectivity.
Assume now that there are two vectors u and v which have the same image
w under T . That is, T (u) = T (v). By assumption, this means, that u = v,
so that every possible image has at most one preimage, which is the definition
for T being injective. �

3.1.5 Definition (Kernel)
Let T : Rm → Rn be a homomorphism. Then the kernel of T is defined to
be the set of vectors x in Rm, which satisfy

T (x) = 0.
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The kernel is denoted by ker(T ).

3.1.6 Theorem
Let T : Rm → Rn be a linear homomorphism. Then T is injective if and
only if T (x) = 0 has only the trivial solution, in other words, if and only if
ker(T ) = {0}.

Proof:
If T is injective, then there is at most one solution to T (x) = 0. But T is
linear, so 0 = 0T (x) = T (0x) = T (0), so that 0 is already a solution. That
means, that T (x) = 0 has only the trivial solution.
Let us now suppose that T (x) = 0 has only the trivial solution. Let u,v be
vectors such that T (u) = T (v). Then 0 = T (u)− T (v) = T (u− v). By our
assumption, we conclude that u− v = 0, hence u = v. �

3.1.7 Remark (Tool!)
Determining whether a linear homomorphism is injective or not just means
finding out, if T (x) = 0 has only the trivial solution.

3.1.8 Lemma
Suppose that A =

[
a1 a2 . . . am

]
is an (n,m)-matrix, and let

x =


x1
x2
...
xm

 , y =


y1
y2
...
ym

 .
Then A(x + y) = Ax + Ay.

3.1.9 Theorem (!Matrix Product as Homomorphism)
Let A be an (n,m)-matrix and define T (x) = Ax. Then T : Rm → Rn is a
linear homomorphism.

Proof: We look at the definition and see that we need to prove two prop-
erties: So let u,v be two arbitrary vectors in Rm.
(a) T (u + v) = A(u + v) = Au + Av = T (u) + T (v).
(b) c(T (u)) = cAu = (cA)u = A(cu) = T (cu).

�
The following theorem gives a tool for deciding whether a vector lies in the
range of a linear transformation or not.
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3.1.10 Theorem
Let A =

[
a1 a2 . . . am

]
be an (n,m)-matrix, and let T : Rm → Rn,x 7→

Ax be a linear transformation. Then
(a) The vector w is in the range of T if and only if Ax = w is a consistent
linear system.
(b) range(T ) = span{a1, . . . , am}.

Proof: (a) A vector w is in the range of T , if and only if there exists a
vector v ∈ Rm, such that

T (v) = Av = w.

But this equation is true, if and only if v is a solution to the system

Ax = w.

(b) By Theorem 2.3.10(a),(d), we know that Ax = w is consistent, if and
only if w is in span{a1, a2, . . . , am}, which just means what the assertion
states. �
Let us find conditions, for when a homomorphism is injective or surjective.

3.1.11 Theorem
Let A be a (n,m)-matrix and define the homomorphism T : Rm → Rn, x 7→
Ax. Then
(a) T is injective, if and only if the columns of A are linearly independent.
(b) If n < m, then T is not injective.
(c) T is surjective, if and only if the columns of A span the codomain Rn.
(d) If n > m, then T is not surjective.

Proof: (a) By Theorem 3.1.6, T is injective, if and only if T (x) = 0 has only
the trivial solution. By Theorem 2.4.3, T (x) has only the trivial solution, if
and only if the columns of A are linearly independent.
(b) If A has more columns than rows, we can apply Theorem 2.4.7. The
columns of A are therefore linearly dependent. Hence, by (a) of this Theorem,
T is not injective.
(c) T is surjective, if and only if its range is Rn. By Theorem 3.1.10, the
range of T equals the span of the columns of A. Hence, the range of T is the
whole of Rn, if the columns of A span Rn.
(d) By Theorem 2.3.7 and the assumption n > m, the columns do not span
Rn, hence T is not onto. �
Let us try an example to see, how we tackle questions about injectivity and
surjectivity.
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3.1.12 Example
(a) Consider the homomorphism

T : R2 → R3,x 7→

 1 3
−1 0

3 3

x.

We determine, if T is injective or surjective. Let us first consider injectivity.
We apply Theorem 3.1.11 and find the echelon form of 1 3 0

−1 0 0
3 3 0

 ∼
 1 0 0

0 1 0
0 0 0

 .
This means, that the associated linear system has only the trivial solution,
so that the columns of A are linearly independent. Hence, we conclude that
T is injective.
The reasoning for T not being surjective is easier: because 3 > 2, T cannot
be surjective.

(b) Is the homomorphism T : R3 → R3,x 7→

 2 1 1
1 2 0
1 3 0

x surjective? By

Theorem 3.1.11 we need to determine, if the columns of the matrix span R3.
Let us find the echelon form of 2 1 1 ?

1 2 0 ?
1 3 0 ?

 ∼
 2 1 1 ?

0 1 −1/3 ?
0 0 −2 ?

 .
Whatever vector [?, ?, ?] we start with, the system will always be consistent.
We thus conclude, that T is surjective.

The following theorem is important. We introduced homomorphisms and we
saw that x 7→ Ax for a matrix A is a homomorphism. But the next theorem
proves that any homomorphism can be written as a matrix-vector-product-
homomorphism.

3.1.13 Theorem
Let T : Rm → Rn be a function (not yet a homomorphism!). There is an
(n,m)-matrix A, such that T (x) = Ax for any x ∈ Rn, if and only if T is a
homomorphism.
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Proof: We have already proven one direction in Theorem 3.1.9. So let us
assume that T is a homomorphism. We need to find a matrix A that satisfies
Ax = T (x) for any x.
Consider the standard vectors

e1 :=


1
0
0
...
0

 , e2 :=


0
1
0
...
0

 , e3 :=


0
0
1
...
0

 , . . . , en :=


0
0
0
...
1

 .

! Note that any vector in Rm can be written as a linear combination of the
standard vectors, as can be seen as follows:

x =


x1
x2
x3

...
xm

 = x1


1
0
0
...
0

+x2


0
1
0
...
0

+. . .+xm


0
0
0
...
0

 = x1e1+x2e2+. . .+xmem.

Now consider the matrix

A :=
[
T (e1) T (e2) . . . T (en)

]
.

We then have from the linear property of T that

T (x) = T (x1e1 + x2e2 + . . .+ xmem)

= x1T (e1) + x2T (e2) + . . .+ xmT (em)

= Ax.

3.1.14 Example
Show that

T : R2 → R3,

[
x1
x2

]
7→

 x2
2x1 − 3x2
x1 + x2


is a homomorphism.
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We could verify the defining properties of homomorphisms (see Definition
3.1.1). Instead we find a matrix such that T (x) = Ax for all x and apply
Theorem 3.1.13.

T (

[
x1
x2

]
) =

 x2
2x1 − 3x2
x1 + x2

 =

 0x1 + x2
2x1 − 3x2
x1 + x2

 =

 0 1
2 −3
1 1

[ x1
x2

]
.

So

A =

 0 1
2 −3
1 1


is the desired matrix and T is indeed a linear transformation.

3.1.15 Theorem (The Big Theorem, Version 2)
Let A = {a1, a2, an} ⊆ Rn, A =

[
a1 . . . an

]
and T : Rn → Rn,x 7→ Ax.

Then the following is equivalent:
(a) A spans Rn.
(b) A is linearly independent.
(c) Ax = b has a unique solution for any b in Rn.
(d) T is surjective.
(e) T is injective.

Proof: In Theorem 2.4.11, we have already proven the equivalences (a)
⇐⇒ (b) ⇐⇒ (c). From Theorem 3.1.11(c) we see, that (a) and (d) are
equivalent. From Theorem 3.1.11(a) we see that (b) and (e) are equivalent.

�

3.2 Matrix Algebra

In Definition 1.4.1, we introduced matrices. We used matrices as a mean to
deal with systems of linear equations. They provided a tool to find solutions
to a linear system by performing Gauss elimination. We also introduced the
matrix-vector product in Definition 2.1.8. This is already a first hint, that
the set of matrices over R provides a very rich algebraic structure. We are
going to explore these structures systematically in this section.
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3.2.1 Definition
Let

A =


a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
...

an1 an2 . . . anm

 andB =


b11 b12 . . . b1m
b21 b22 . . . b2m
...

...
...

bn1 bn2 . . . bnm


be two (n,m)-matrices over R, and let c ∈ R. Then addition and scalar
multiplication of matrices are defines as follows:

(a)Addition: A+B =


(a11 + b11) (a12 + b12) . . . (a1m + b1m)
(a21 + b21) (a22 + b22) . . . (a2m + b2m)

...
...

...
(an1 + bn1) (an2 + bn2) . . . (anm + bnm)

.

(b)Scalar multiplication: cA =


ca11 ca12 . . . ca1m
ca21 ca22 . . . ca2m

...
...

...
can1 can2 . . . canm


Just as we did with vectors, we find some algebraic properties which matrices
inherited from the corresponding properties in R. Compare with Theorem
2.1.4.

3.2.2 Theorem
Let s, t be scalars, A,B and C be (n,m)-matrices. Let 0nm be the (n,m)-
zero-matrix, which has all 0’s at entries. Then
(a) A+B = B + A
(b) s(A+B) = sA+ sB
(c) (s+ t)A = sA+ sB
(d) (st)A = s(tA)
(e) A+ 0nm = A

Proof: Mimic proof of Theorem 2.1.4. �
The operations ’addition’ and ’scalar mulitplication’, did not hit us by sur-
prise. What we already knew about vectors is easily generalized to matrices.
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What is really new is the following way to define a new and unexpected ma-
trix product. Instead of a componentwise multiplication, we will introduce
a convolution product. This new product reveals a lot of algebraic structure
that inhibits the set of (n,m)-matrices.

3.2.3 Definition (Matrix-Matrix-Product)
Let A be an (n, k)-matrix and B =

[
b1 b2 . . . bm

]
be a (k,m)-matrix.

Then the matrix product AB is the (n,m)-matrix given by

AB =
[
Ab1 Ab2 . . . Abm

]
.

3.2.4 Remark
Note that the matrix product for two matrices is only defined if the number
of columns of the first matrix equals the number of rows of the second matrix.

3.2.5 Example
Let

A =

[
2 0
−1 3

]
and B =

[
2 1 0
0 4 2

]
and compute the matrix product AB.
We defined AB to be

[
Ab1 Ab2 Ab3

]
. So let us compute the three ma-

trix vector products:

Ab1 = 2

[
2
−1

]
+ 0

[
0
3

]
=

[
4
−2

]

Ab2 = 1

[
2
−1

]
+ 4

[
0
3

]
=

[
2

11

]

Ab3 = 0

[
2
−1

]
+ 2

[
0
3

]
=

[
0
6

]
,

so that

AB =

[
4 2 0
−2 11 6

]
.

Even though the definition of the matrix product works fine, there is a for-
mula, which makes it much more practical - even if you do not think so when
seeing the formula. It is all about using your both hands in order to get used
to the matrix product.
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3.2.6 Lemma
Let A be an (n, k)-matrix and B =

[
b1 b2 . . . bm

]
be a (k,m)-matrix.

Then the i, j-entry of C = AB for 1 ≤ i ≤ n and 1 ≤ j ≤ m is given by

Cij =
k∑

t=1

AitBtj.

Now we are ready to inevestigate the set of matrices with et another product
and find out which structures are revealed.

3.2.7 Definition (Zero Matrix, Identity Matrix)
(a) The (n,m)-matrix having only zero entries is called the zero (n,m)-
matrix and denoted by 0nm.
(b) The identity (n, n)-matrix is of the form

1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

. . .
...

0 0 0 . . . 1


and denoted by In or I, if the dimensions are obvious.
(c) We introduce the short notation [aij] for

a11 a12 . . . a1m
a21 a22 . . . a2m

...
...

...
an1 an2 . . . anm

 .
3.2.8 Theorem
Let s be a scalar, and let A,B and C be matrices. Then each of the following
holds, whenever the dimensions of the matrix are such that the operation is
defined.
(a) A(BC) = (AB)C
(b) A(B + C) = AB + AC
(c) (A+B)C = AC +BC
(d) s(AB) = (sA)B = A(sB)
(e) AI = A
(f) IA = A
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Proof: All proofs apply Lemma 3.2.6, so we illustrate only the parts (c)
and (e).
(c) Let A = [aij] and B = [bij] be (n,m)-matrices and let C = [cij] be an
(m, k)-matrix. Then the (ij)-entry of (A+B)C is

(A+B)Cij =
m∑
t=1

(Ait+Bit)Ctj =
m∑
t=1

(AitCtj+BitCtj) =
m∑
t=1

AitCtj+
m∑
t=1

BitCtj.

But the last term is just the (ij)-entry of AC +BC, just what we wanted to
proof.
(e) The (i, j)-entry of AIm is by Lemma 3.2.6

(AIm)ij =
m∑
t=1

AitItj.

But Itj is only not zero if t = j, so that the sum can be displayed as

(AIm)ij = Aij,

so the assertion follows. �
We will now see a phenonemon, that we have not encountered before. We
need to get used to the fact that different products lead to different behaviour.

3.2.9 Theorem
Let A,B and C be matrices with dimensions so that all products are well
defined.
(a) It is possible that AB 6= BA, i.e. the set of matrices is not commutative
under the matrix product.
(b) AB = 0 does not imply that A = 0 or B = 0.
(c) AC = BC does not imply that A = B or C = 0.

Proof: (a) We give examples that prove the statement right. Consider

A =

[
2 −1
−1 0

]
and B =

[
0 1
4 −1

]
.

Then

AB =

[
−4 3

0 −1

]
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and

BA =

[
−1 0

9 −4

]
.

(b) Consider

A =

[
1 2
3 6

]
and B =

[
−4 6

2 −3

]
.

Then AB = 022, but neither A nor B is the zero-vector.
(c) Consider

A =

[
−3 3
11 −3

]
and B =

[
−1 2

3 1

]
and C =

[
1 3
2 6

]
.

Even though A 6= B and C is not the zero matrix, we have AC = BC.
�

Let us continue defining operations on the set of matrices.

3.2.10 Definition
The transpose of an (n,m)-matrix A, denoted by At, AT and also Atr, is
the (m,n)-matrix defined by At

ij = Aji. Practically, it is interchanging rows
and columns.

3.2.11 Example
(a) Consider

A =

 1 2 3 4
5 6 7 8
9 10 11 12

 .
Then

At =


1 5 9
2 6 10
3 7 11
4 8 12

 .
(b) 

2
3
−1

2
4


t

= [2 3 − 1 2 4].

We have the following properties for transposing.
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3.2.12 Theorem
Let A,B be (n,m)-matrices, C be an (m, k)-matrix and s be a scalar. Then
(a) (A+B)t = At +Bt

(b) (sA)t = sAt

(c) (AC)t = CtAt

Proof: (a) and (b) are straightforward. (c), even not difficult regarding
the idea, is very technical (apply Lemma 3.2.6) and therefore left out. �

3.2.13 Definition (Symmetric Matrices)
A matrix A that satisfies At = A, is called symmetric. Note that it must
be an (n, n)-matrix.

3.2.14 Definition (Power of a matrix)
We define the k-th power of a matrix A to be the product

Ak = A · A · · · A,

where we have k factors.

3.2.15 Definition (Diagonal Matrix, Upper/Lower Triangular Matrix)
(a) A diagonal (n, n)-matrix is of the form

a11 0 0 . . . 0
0 a22 0 . . . 0
0 0 a33 . . . 0
...

...
...

. . .
...

0 0 0 . . . ann

 .

(b) An upper triangular (n, n)-matrix is of the form
a11 a12 a13 . . . a1n
0 a22 a23 . . . a2n
0 0 a33 . . . a3n
...

...
...

. . .
...

0 0 0 . . . ann

 .



Matrix Algebra 67

(c) A lower triangular (n, n)-matrix is of the form
a11 0 0 . . . 0
a21 a22 0 . . . 0
a31 a32 a33 . . . 0
...

...
...

. . .
...

an1 an2 an3 . . . ann

 .

We introduced these matrices because they behave in a certain way under
multiplication with matrices of the same shape.

3.2.16 Theorem
(a) If

A =


a11 0 0 . . . 0
0 a22 0 . . . 0
0 0 a33 . . . 0
...

...
...

. . .
...

0 0 0 . . . ann

 .
is a diagonal matrix and k ≥ 1 an integer, then

Ak =


ak11 0 0 . . . 0
0 ak22 0 . . . 0
0 0 ak33 . . . 0
...

...
...

. . .
...

0 0 0 . . . aknn

 .

(b) If A,B are upper (lower) triangular (n, n)-matrices, then AB is also an
upper (lower) triangular (n, n)-matrix. In particular, if k ≥ 1 is an integer,
then Ak is also an upper (lower) triangular (n, n)-matrix.

Proof: (a) We proof this assertion by induction. If k = 1, then A = A1 =
Ak is a diagonal matrix, so the assertion is true for k = 1. Let us assume
that the assertion is true for all integers up to k − 1. We need to proof that
it is also true for k. Let us write Ak = (Ak−1) · A. For Ak−1, the induction
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hypothesis holds and we know that this is a diagonal matrix.

Ak = Ak−1 · A =


ak−1
11 0 0 . . . 0

0 ak−1
22 0 . . . 0

0 0 ak−1
33 . . . 0

...
...

...
. . .

...
0 0 0 . . . ak−1

nn




a11 0 0 . . . 0

0 a22 0 . . . 0
0 0 a33 . . . 0
...

...
...

. . .
...

0 0 0 . . . ann



=


ak11 0 0 . . . 0
0 ak22 0 . . . 0
0 0 ak33 . . . 0
...

...
...

. . .
...

0 0 0 . . . aknn

 .
The last equality results from just performing matrix multiplication.
(b) We proof the assertion for upper triangular matrices. The proof for the
lower triangular matrices works just the same. We need to show that below
the diagonal, there are only zero entries. The indices of any entry (AB)ij
below the diagonal satisfy i > j. So let i > j and determine what ABij is.
By Lemma 3.2.6, we have

(AB)ij =
n∑

t=1

aitbtj.

Now consider the following four cases:
(i) i > t: Then ait = 0, so the product aitbtj = 0.
(ii) t > j: Then btj = 0, so is the product aitbtj.
(iii) t ≥ i. But then we have t ≥ i > j by assumption, so that btj = 0, hence
the product aitbtj = 0.
(iv) j ≥ t. But then i > j ≥ t, so that ait = 0 in this case, hence the product
aitbtj = 0.
These are all possible cases for t, which means, that

(AB)ij =
n∑

t=1

aitbtj = 0

for i > j. �

3.2.17 Remark
As we have seen, the set of (n, n)-matrices satisfies the following properties
for any matrices A,B,C and scalars a, b ∈ R.
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(a) A+B = B + A
(b) A+ 0 = A
(c) (AB)C = A(BC)
(d) AI = A
(e) A(B + C) = AB + AC
(f) (A+B)C = AC +BC
(g) a(A+B) = aA+ aB
(h) (a+ b)A = aA+ bA
(i) (ab)A = a(bA)
(j) 1A = A
(k) a(AB) = (aA)B = A(aB)
Because of these properties, we call the set of (n, n)-matrices over R an R-
algebra.

3.3 Inverses

In practical applications such as encoding data, encrypting messages, logisis-
tics, linear homomorphisms are used to handle data. But the nature of these
applications request, that we can get back from an image to the preimage.
This is the scope of this section. We will determine the properties a homo-
morphism needs to have in order to ”go back”, i.e. in order to have an inverse.
Moreover, we will learn how to determine the inverse of a homomorphism.

3.3.1 Definition (Invertible homomorphism, Inverse)
A homomorphism T : Rm → Rn is invertible, if T is an isomorphism, i.e.
injective and surjective. When T is invertible, the inverse T−1 : Rn → Rm

is defined by
T−1(y) = x if and only if T (x) = y.

What we have is the following picture.
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x = T−1(y)

Domain

y = T (x)

Codomain

3.3.2 Definition (Identity function)
A function f that satisfies f(x) = x for all x in the domain of f is called the
identity function. It is denoted by id.

3.3.3 Remark
If T is an invertible homomorphism, then the inverse function is uniquely
determined. Its domain is the range of T , which is equal to the codomain of
T , and its codomain is the domain of T . Moreover,

T (T−1)(y) = y and T−1(x) = x,

hence, T (T−1) = id is the identity on the range of T and T−1(T ) = id is the
identity on the domain of T .

3.3.4 Theorem
Let T : Rm → Rn be a homomorphism. Then
(a) If T has an inverse, then m = n.
(b) If T is invertible, then T−1 is also an invertible homomorphism.

Proof: (a) If T has an inverse, then it is surjective and injective. By
Theorem 3.1.11(b) and (d) we have n ≥ m and n ≤ m, hence equality.
(b) We need to show that T−1(u+v) = T−1(u)+T−1(v) for all v,u. But T is
an isomorphism, so there are unique ũ, ṽ, such that T (ũ) = u and T (ṽ) = v.
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Therefore, we have

T−1(u + v) = T−1(T (ũ)) + T (ṽ))

= T−1(T (ũ + ũ)

= ũ + ṽ

= T−1(u) + T−1(v).

Moreover, we need to show that T−1 respects scalar multiplication. So sim-
ilarly to the above, we have T−1(ru) = T−1(rT (ũ)) = T−1(T (rũ)) = rũ =
r(T−1(u)). �
Remember Theorem 3.1.13? Every homomorphism T can be written in
matrix-form, meaning there is a matrix A such that T (x) = Ax for any
vector x in the domain.
What does this mean in the world of inverses?

3.3.5 Lemma
Let idRn be the identity on Rn. Then the associated matrix for this homo-
morphism is the identity matrix.

Proof: For any vector in Rn we need to find a matrix A such that id(x) =
Ax. By plugging in the standard vectors, the assertion follows. �

3.3.6 Theorem
Suppose that T is an invertible homomorphism with associated matrix AT .
Then the inverse T−1 has an associated matrixAT−1 which satisfiesATAT−1 =
I.

Proof: By Lemma 3.3.5 and Remark 3.3.3, the assertion follows. �

3.3.7 Definition (Invertible Matrix, Singular Matrix)
Let A be an (n, n)-matrix. Then A is called invertible or nonsingular, if
there exists an (n, n)-matrix B such that AB = In. If A has no inverse, it is
called singular.

3.3.8 Corollary
Let T be an invertible homomorphism. Then the associated matrix A is also
invertible. �

3.3.9 Theorem
Let A be an invertible matrix and let B be a matrix with AB = I. Then
BA = In. Moreover, B is the unique matrix such that AB = BA = I.
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Proof: Let x ∈ Rn. Then

AB(Ax) = IA(x) = Ax⇒ A(BAx) = Ax⇒ A(BAx− x) = 0.

But A is invertible, in particular it is injective. So Ay = 0 has only the
trivial solution. Therefore, A(BAx − x) = 0 means that BAx − x must be
the trivial vector, hence BAx = x. Since x ∈ Rn was arbitrary, we have that
BA is the identity matrix.
Now suppose, that there is a matrix C with AB = AC = I. Then

B(AB) = B(AC)⇒ (BA)B = (BA)C ⇒ B = C,

as we have just proven that BA = I. Hence B = C, so it is unique. �

3.3.10 Definition (Inverse matrix)
Let A be an invertible matrix. Then the uniquely determined matrix B such
that AB = BA = I is called the inverse of A and is denoted by B = A−1.

3.3.11 Theorem
Let A and B be invertible (n, n)-matrices, and C,D be (n,m)-matrices.
(a) A−1 is invertible with (A−1)−1 = A.
(b) AB is invertible with (AB)−1 = B−1A−1.
(c) If AC = AD, then C = D. (Compare that to Theorem 3.2.9).
(d) If AC = 0nm, then C = 0nm.

Proof: (a) We know that A−1A = I. So by Theorem 3.3.9, the inverse of
the inverse, which is (A−1)−1 = A.
(b) Note that

(AB)(B−1A−1) = AIA−1 = AA−1 = I.

Therefore, the inverse of (AB) is (AB)−1 = B−1A−1.
(c) Consider C = IC = A−1AC = A−1AD = ID = D.
(d) As in (c). �
How do we find the inverse of a matrix. As we will see, there is an algorithm
that provides a way to find an inverse of a matrix, if it exists.
For this, it is convenient to introduce the following notion.
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3.3.12 Definition
The vector

ei =



0
0
...
0
1
0
0
...
0


∈ Rn,

where the nonzero entry is in the i-th position, is called the i-th standard
vector of Rn.

Let A be an invertible matrix and denote for the time being the inverse of
A by B = [b1 . . . bn]. Then, by definition, we have AB = I = [e1 . . . en].
Remember the definition of a matrix product, Definition 3.2.3. From that,
we can read off, that

Ab1 = e1, . . . Abn = en.

But this reads as ”b1 is the solution to Ax = e1, . . ., bn is the solution to
Ax = en. Each of these n systems, could have been solved one at a time by
performing Gauss-Jordan elimination to each of the systems[

a1 . . . an ei

]
for all 1 ≤ i ≤ n.

But we can save some time and work by doing that simultaneously with one
large augmented matrix :[

a1 . . . an e1 . . . en

]
.

If we are done with Gauss-Jordan elimination, then we will have

[A| In] transformed to [In|A−1 ].

3.3.13 Example
Find the inverse of

A =

 1 0 −2
2 1 2
2 1 3

 .
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So we need to Gauss-Jordan-eliminate the following large augmented matrix 1 0 −2 1 0 0
2 1 2 0 1 0
2 1 3 0 0 1

 ∼

 1 0 −2 1 0 0
0 1 6 −2 1 0
0 1 7 −2 0 1


 1 0 −2 1 0 0

0 1 6 −2 1 0
0 0 1 0 −1 1

 ∼

 1 0 0 1 −2 2
0 1 0 −2 7 −6
0 0 1 0 −1 1


We therefore conclude that the right hand side of the augmented matrix is
the inverse

A−1 =

 1 −2 2
−2 7 −6

0 −1 1


3.3.14 Example
How do we see, if a matrix does not have an inverse? Let us have a look at
an example.
Does

A =

 1 0 0
0 1 1
−2 3 3


have an inverse? Start with the algorithm: 1 0 0 1 0 0

0 1 1 0 1 0
−2 3 3 0 0 1

 ∼

 1 0 0 1 0 0
0 1 1 0 1 0
0 3 3 2 0 1


 1 0 0 1 0 0

0 1 1 0 1 0
0 0 0 2 −3 1


We see with the third row that this is an inconsistent system. It therefore
has no solution, hence no inverse.

For (2, 2)-matrices there is a quick formula for finding the inverse. We will
later learn how with the help of determinants, the formula is correct.
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3.3.15 Remark
Let

A =

[
a b
c d

]
be a (2, 2)-matrix. If ad− bc 6= 0, then the inverse of A can be computed by:

A−1 =
1

ad− bc

[
d −b
−c a

]
.

Proof: Just compute AA−1 and see that it is the identity matrix. �
We had a lot of statements about linear systems relating (augmented) ma-
trices. Let us see how this relation is specified with inverse matrices.
Let us finish the section with yet a further version of the Big Theorem.

3.3.16 Theorem (The Big Theorem, Version 3)
Let A = {a1, a2, an} ⊆ Rn, A =

[
a1 . . . an

]
and T : Rn → Rn,x 7→ Ax.

Then the following is equivalent:
(a) A spans Rn.
(b) A is linearly independent (remember: i.e. Ax = 0 has only one solution).
(c) Ax = b has a unique solution for any b in Rn given by x = A−1b.
(d) T is surjective.
(e) T is injective.
(f) A is invertible.

Proof: We have already the equivalences (a),(b),(c),(d),(e). Therefore we
need to proof that T is injective if and only if A is invertible. But T is
injective if and only if (we are in the setting of the Big Theorem ”n = m”)
T is surjective, if and only if A is invertible. �
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Chapter 4

Subspaces

4.1 Introduction to Subspaces

We have seen homomorphisms, that are surjective, and we have seen sets
of vectors that span the whole of Rn. But what if a homomorphism is not
surjective? What if a set of vectors does not span the whole Euclidean
space? Which structural properties do we then find in the range of that
homomorphism and in the span of the vectors, respectively? This is the
scope of this section, we will study so called subspaces.

4.1.1 Definition (subspace)
A subset S of Rn is a subspace, if S satisfies the following three conditions:
(i) S contains the zero vector 0.
(ii) If u and v are in S, then so is u + v.
(iii) If u is in S and r any real number, then ru is also in S.

4.1.2 Example
(a) φ, the empty set is not a subspace because it does not satisfy the first
property fromthe definition of subspace.
(b) {0} ⊂ Rn is a subspace.
(c) Rn is a subspace.
(d) The set of all vectors that consists of integer components is not a sub-
sapce, because it violates (iii) of the definition. We sometimes say that (b)
and (c) are the trivial subspaces of Rn.
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4.1.3 Example
Let us consider the set vectors S in R3, that have a zero in the third compo-
nent, i.e.

S = {

 a
b
0

 | a, b ∈ R}.

Is S a subspace? Let us check the defining properties:

(i)

 0
0
0

 is an element of S, because it has a zero in the last component.

(ii) Consider

 a1
b1
0

 ,
 a2
b2
0

. Then

 a1
b1
0

+

 a2
b2
0

 =

 a1 + a2
b1 + b2

0

 ,
which is again an element of S.

(iii) Let r be a scalar and

 a
b
0

. Then

r

 a
b
0

 =

 ra
rb
0

 ,
which again is an element in S.
Hence, we showed that S is indeed a subspace of R3.
If we had chosen the last component to be 1, then we easily would have seen
that no defining property of a subspace would had been satisfied.

Which sets do we easlily recognize as subspaces?

4.1.4 Theorem
Let S = span{u1,u2, . . . ,um} be a subset of Rn. Then S is a subspace of
Rn.

Proof: (a) Since 0u1 + . . . + 0um lies in the span, the zero vector is an
element of the span.
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(b) Let v,w be elements of S. Then there are scalars r1, . . . , rn and s1, . . . , sn
such that

v = r1u1 + . . .+ rnun and w = s1u1 + . . .+ snun.

The aum of the two vectors is then

u+w = r1u1+ . . .+rnun+s1u1+ . . .+snun = (r1+s1)u1+ . . .+(rn+sn)un.

But this last expression is easily identified as an element lying in the span of
u1, . . . ,un.
(c) Let c be an scalar and let v = r1u1 + . . .+rnun be an element in S. Then

cv = c(r1u1 + . . .+ rnun) = (cr1)u1 + . . .+ (crn)un

is again represented as an element of the span. �

4.1.5 Example
Let

A =

 1 3 4 0
0 2 4 4
1 1 0 −4

 .
Let us determine the solution to the corresponding homogeneous system:

 1 3 4 0 0
0 2 4 4 0
1 1 0 −4 0

 ∼

 1 3 4 0 0
0 2 4 4 0
0 −2 −4 −4 0

 ∼

 1 3 4 0 0
0 2 4 4 0
0 0 0 0 0


We deduce, that x3, x4 are free variables, which means that we set them to
be x3 = s1 and x4 = s2. Backward substitution gives us then x1 = 2s1 + 6s2
and x2 = −2s1 − 2s2. The general solution is therefore

x = s1


2
−2

1
0

+ s2


6
−2

0
1

 .
This can also be written in the form

S = span{


2
−2

1
0

 ,


6
−2

0
1

}.
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Note also, that the zero vector corresponds to the trivial solution, which
lies in S. By the algorithm in Remark 4.1.4, we thus conclude, that S is a
subspace of R3.

The result of the previous example holds in general, as we see in the following
theorem.

4.1.6 Theorem
If A is an (n,m)-matrix, then the set of solutions to the homogeneous system
Ax = 0 is a subspace of Rm.

Proof: (a) The zero vector represents the trivial solution and is hence an
element of the set of solutions.
(b) Suppose u,v are both solutions to the system. Then

A(u + v) = Au + Av = 0 + 0 = 0,

which shows, that the sum of two solutions is again a solution to the homo-
geneous system.
(c) Let c ∈ R and u be a solution. Then

A(cu) = c(Au) = c0 = 0,

which shows, that the set of solutions is also closed under scalar multiplica-
tion.
Overall, we have that the set of solutions is a subspace. �

4.1.7 Definition (Null Space)
If A is an (n,m)-matrix, then the set of solutions to the homogeneous system
Ax = 0 is called the null space of A and denoted by null(A).

Now that we have that the solutions to a system form a subspace, we can
ask and investigate which other sets we have encountered so far also form
subspaces. That leads us directly into homomorphisms, their range and their
kernel.

4.1.8 Theorem
Let T : Rm → Rn be a homomorphism. Then the kernel of T is a subspace
of the domain Rm and the range of T is a subspace of the codomain Rn.
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Proof: Let A = [a1, . . . am] be the associated (n,m)-matrix wrt T . Then
any element of the kernel of T satisfies Ax = 0. Thus, we see that elements
of the kernel are solutions to the homogeneous system associated with A, i.e.
we have

ker(T ) = null(A).

By Theorem 4.1.6, we thus have that the kernel is in fact a subspace of Rm.
In Theorem 3.1.10, we saw that the range of T and the span of the columns
of A were the same, i.e.

range(T ) = span{a1, . . . , am}.

�

4.1.9 Example
Determine the kernel and the range of the homomorphism T : R2 → R3,

[
x1
x2

]
7→ 2x1 − 10x2

−3x1 + 15x2
x1 − 5x2

. The associated matrix wrt T is

A =

 2 −10
−3 15

1 −5

 .
Because ker(T ) = null(A), we just need to find the solution to 2 10 0

−3 15 0
1 −5 0

 .
But this matrix is equivalent to 1 −5 0

0 0 0
0 0 0

 .
Any solution to this system is of the form

x = s

[
5
1

]
,
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which means that the kernel of T is

ker(T ) = span{
[

5
1

]
}.

What is th range of T? By Theorem 3.1.10, the range of T is just the span
of the columns of A. Hence we have

range(T ) = span{

 2
−3

1

 ,
 −10

15
−5

}.
Let us close this section with the Big Theorem extended by the results of
this section.

4.1.10 Theorem (Big Theorem, Version 4)
Let A := {a1, a2, . . . , an} be a set of n vectors in Rn, let A =

[
a1 . . . an

]
,

and let T : Rn → Rn be given by T (x) = Ax. Then the following are
equivalent:
(a) A spans Rn.
(b) A is linearly independent.
(c) Ax = b has a unique solution for any b ∈ Rn.
(d) T is surjective.
(e) T is injective.
(f) A is invertible.
(g) ker(T ) = {0}.
(h) null(A) = {0}.

Proof: (a) through (f) has already been proven in Theorem 3.3.16. Theo-
rem 3.1.6 gives the last equivalence. �

4.2 Basis and Dimension

When we like to find a set of vectors in Rn such that their span is the whole
of Rn, we need to choose ’enough’ vectors, just saying ’more is better’ in that
sense. On the other hand, when dealing with linearly independent sets, we
rather choose only few such vectors, ’less is better’. As we will see in this
section, there is a point that exactly meets both needs and both directions
of adding vectors and taking vectors out.
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4.2.1 Definition (!!!!Basis!!!!)
A set B = {u1,u2, . . . ,um} is called a basis for a subspace S if
(a) B spans S.
(b) B is linearly independent.

Let us first look at some properties of bases.

4.2.2 Theorem
Let B = {u1, . . . ,um} be a basis for a subspace S. Then every vector v in S
can be written as a linear combination

v = r1u1 + . . .+ rmum

in exactly one way.

Proof: B is per assumption a basis for S, hence, its vectors span S. Assume
therefore there are two ways to present v ∈ S:

u = r1u1 + . . .+ rmum and u = s1u1 + . . .+ smum.

Reorganizing this equation gives us

(r1 − s1)u1 + . . .+ (rm − sm)um = 0.

But as B is assumed to be a basis it has linearly independent vectors, thus
only the trivial solution to the previous equation. That means, that r1 =
s1, . . . , rm = sm. �

4.2.3 Example
Consider the set A := {

 1
0
1

 ,
 1

0
0

 ,
 0

0
1

}. Let S = span(A). We easily

see, that

 2
0
2

 is an element of S. But 2
0
2

 = 2

 1
0
0

+ 2

 0
0
1

 = 2

 1
0
1

 .
The setA provides two different ways of representing the vector

 2
0
2

, hence

A cannot be a basis for S.
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4.2.4 Definition (Standard Basis)
Let

ei =



0
...
0
1
0
...
0


,

be the i-th standard vector for 1 ≤ i ≤ n. Then {e1, e2, . . . , en} is called the
standard basis of Rn.

Before we proceed we need a technical lemma.

4.2.5 Lemma
Let A and B be equivalent matrices. Then the subspace spanned by the rows
of A is the same as the subspace spanned by the rows of B.

Is there always a basis for a subspace? Yes there is, and here is how you find
it:

4.2.6 Theorem
Let S = span{u1, . . . , um}. A basis of S can be obtained in the following
way:
STEP 1: Use the vectors u1, . . . ,um to form the rows of a matrix A.
STEP 2: Transform A to echelon form B.
STEP 3: The non-zero rows give a basis for S.

Proof: The new rows still span S, by Lemma 4.2.5. The linearly indepen-
dence is given by the fact that we choose the non-zero rows which are in ech-
elon form, giving us only the trivial solution when considering the associated
homogenous system. Be careful: We are now stating linear independence for
rows instead of columns! �

4.2.7 Example
Find a basis for the following subspace:

span{


1
0
−2

3

 ,

−2

2
4
2

 ,


3
−1
−6

5

}.



Basis and Dimension 85

Let us put them into a matrix 1 0 −2 3
−2 2 4 2

3 −1 −6 5

 ∼
 1 0 −2 3

0 2 0 8
0 0 0 0

 .
We therfore have as a basis for the subspace:

B = {


1
0
−2

3

 ,


0
2
0
8

}.
4.2.8 Lemma
Suppose U = [u1 . . . um] and V = [v1 . . . vm] are two equivalent matrices.
Then any linear dependence that exists among the vectors u1, . . . ,um also
exists among the vectors v1, . . . ,vm. This means, that if WLOG u1 = r2u2+
. . .+ rmum, then v1 = r2v2 + . . .+ rmvm.

There is another way of determining the basis of a subspace, involving the
columns instead of the rows.

4.2.9 Theorem
Let S = span{u1, . . .um}. Then the following algorithm provides a basis for
S.
STEP 1: Use the vectors u1, . . . ,um to form the columns of a matrix A.
STEP 2: Transform A to echelon form B. The set of the pivot columns will
be linearly independent (and the remaining will be linearly dependent form
the pivot columns).
STEP 3: The set of columns of A corresponding to the pivot columns of B
form a basis of S.

4.2.10 Example
Find a basis for the following subspace:

span{


1
0
−2

3

 ,

−2

2
4
2

 ,


3
−1
−6

5

}.
Following the previous algorithm, we transform the following matrix in ech-
elon form:
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
1 −2 3
0 2 −1
−2 4 −6

3 2 5

 ∼


1 −2 3
0 2 −1
0 0 0
0 8 −4

 ∼


1 −2 3
0 2 −1
0 0 0
0 0 0



The pivot columns are the first and second column, so B := {


1
0
−2

3

 ,

−2

2
4
2

}
is a basis for the subspace.

4.2.11 Remark
We obviously have two options of determining a basis for a given subspace.
The first algorithm has the tendency to give back vectors with more zero
entries, which is sometimes favorable. The second algorithm gives us a basis
which is a subset of the original vectors. Deciding which algorithm to use
depends on what you like to do with the basis afterwards.

4.2.12 Theorem
Let S be a subspace of Rn. Then any basis of S has the same number of
vectors.

Proof: We just give the idea to the proof. We assume the contrary, so that
there are at least two bases, one of which has less elements than the other.
Denote this basis by U , the one with more elements by V . By the definition
of the basis, each element of V can be expressed as a linear combination of
elements of U . Consider then the homogeneous equation

a1v1 + . . .+ amvm = 0

of elements of V and subsitute their expression in terms of elements of U .
Because of the linear independence of U , this gives a system of homogeneous
equation with mire variables than equations, hence infinitely many solutions,
a contradiction to the linear independence of V . �

4.2.13 Definition (Dimension)
Let S be a subspace of Rn. Then the dimension of S is the uniquely
determined number of vectors in any basis of S.
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4.2.14 Remark
(a) The zero subspace {0} has no basis and its dimension is defined to be 0.
(b) One finds the dimension of a space, by determining a basis and counting
its elements.

4.2.15 Theorem
Let U = {u1, . . . ,um} be a set of vectors in a subspace S of Rn.
(a) If U is linearly independent, then either U is a basis for S or additional
vectors can be added to U to form a basis of S.
(b) If U spans S, then either U is a basis for S or vectors can be removed
from U to form a basis for S.

Proof: (a) If U spans S, it is a basis. If not, then select a vector s1 ∈ S
that does not lie in the span of U and add it to U . Denote the new set by
U2. As s1 is not in the span of U , we know that U2 is linearly independent.
If U2 spans S, then it is a basis. If not, repeat the process until the set spans
S, which gives then a basis for S.
(b) Apply the algorithm of Theorem 4.2.9. �
Let us go through an example of how to find a basis.

4.2.16 Example
Let

x1 =


7
3
−6

4

 , A =


−3 3 −6 −6

2 6 0 −8
0 −8 4 12
−3 −7 −1 9

2 10 −2 −14

 .
Note that x1 lies in the null space of A. Find a basis of null(A) that includes
x1. Find a basis for null(A).
After using Gauss algorithm we see, that the null space of A has the following
form:

null(A) = span{


−1

3
0
2

 ,

−3

1
2
0

}.
Finding a basis that includes x1, is now possible with the ’Column-Algorithm’
described in Theorem 4.2.9.
We therefore consider the following matrices:
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
7 −1 −3
3 3 1
−6 0 2

4 2 0

 ∼


3 0 −1
0 3 2
0 0 0
0 0 0


The pivot columns of the previous matrix are the first and the second, hence
we take the first and the second matrix of the original matrix to find that

{


7
3
−6

4

 ,

−1

3
0
2

}
is a basis for null(A).

4.2.17 Theorem
Let U be a set of m vectors of a subspace S of dimension m. If U is either
linearly independent or spans S, then U is a basis for S.

Proof: If U is linearly independent, but does not span S, then by Theorem
4.2.15, we can add an additional vector, so that U together with the new vec-
tor stays linearly independent. But this gives a linearly independent subset
of S with more than m elements, which is a contradiction to the assumption
that dim(S) = m.
If U spans S, but is not linearly independent, there is a vector in U , that lies
in the span of the others. Remove this vector from U to obtain the set U1.
Repeat this process until ou get to a linearly independent set U∗, which still
spans S. Hence U∗ is a basis for S contradicting the assumption that the
dimension is m. �

4.2.18 Theorem
Suppose that S1, S2 are both subspaces of Rn and that S1 is a subset of
S2. Then dim(S1) ≤ dim(S2). Moreover, dim(S1) = dim(S2) if and only if
S1 = S2.

Proof: Assume that dim(S1) > dim(S2). Let BS1 be a basis for S1. Then
S1 = span(B1) ⊆ S2. Then by Theorem 4.2.15 (a), additional vectors can
be added to B1 to obtain a basis for S2. But this is a contradiction to the
assumption dim(S1) > dim(S2).
If dim(S1) = dim(S2), then any basis for S1 must be already a basis for S2.

�
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4.2.19 Theorem
Let U = {u1, . . . ,um} be a set of vectors in a subspace S of dimension k.
(a) If m < k, then U does not span S.
(b) If m > k, then U is not linearly independent.

Proof: (a) Assume that U spans S. By Theorem 4.2.15(b) we conclude,
that m must be greater than the dimension of S, a contradiction to m < k.
(b) Assume that U is linearly independent. By Theorem 4.2.15(a), we can
add vectors to U to obtain a basis, a contradiction to m > k. �

4.2.20 Theorem (Big Theorem, Version 5)
Let A := {a1, a2, . . . , an} be a set of n vectors in Rn, let A =

[
a1 . . . an

]
,

and let T : Rn → Rn be given by T (x) = Ax. Then the following are
equivalent:
(a) A spans Rn.
(b) A is linearly independent.
(c) Ax = b has a unique solution for any b ∈ Rn.
(d) T is surjective.
(e) T is injective.
(f) A is invertible.
(g) ker(T ) = {0}.
(h) null(A) = {0}.
(i) A is a basis for Rn.

Proof:
We only need to prove the equivalence of (a)-(g) with (h). By Definition
4.2.1, (a) plus (b) are equivalent with (h). �

4.3 Row and Column Spaces

In the previous section we introduced two algorithms fo obtaining a basis
of a subspace. One involved the rows of a matrix, the other the columns.
In this section, we will learn how the columns and the rows of a matrix are
structurally connected.

4.3.1 Definition (Row Space, Column Space)
Let A be an (n,m)-matrix.
(a) The row space of A is the subspace of Rm spanned by the row vectors
of A and is denoted by row(A).
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(b) The column space of A is the subspace of Rn spanned by the column
vectors of A and is denoted by col(A).

4.3.2 Example
Consider the matrix [

1 −1 2 1
0 1 0 1

]
.

Then the row space is

span{[1, −1, 2, 1], [0, 1, 0, 1]}

and the column space is

span{
[

1
0

]
,

[
−1

1

]
,

[
2
0

]
,

[
1
1

]
}.

Note that in general the column space and the row space are not equal.

The algorithms for providing a basis can now be reformulated as follows:

4.3.3 Theorem
Let A be a matrix and B an echelon form of A.
(a) The nonzero rows of B form a basis for row(A).
(b) The columns of A corresponding to the pivot columns of B form a basis
for col(A). �

Shedding a slightly different view on Theorem 4.2.6 and 4.2.9, and Theorem
4.3.3.

4.3.4 Theorem
For any matrix A, the dimension of the row space equals the dimension of
the column space.

Proof: WLOG we may assume that A is already in echelon form. By
Theorem 4.3.3(a), we know that the dimension of the row space of A is equal
to the nonzero rows. But remembering the stair-like pattern form of matrices
in echelon form, we conclude that each pivot nonzero row has exactly one
pivot position, hence a pivot column. Thus, the number of pivot columns is
equal to the number of nonzero rows. By Theorem 4.3.3(b), the statement
follows. �
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4.3.5 Definition (Rank)
Let A be a matrix. Then the rank of A is the dimension of the row (or
column) space. It is denoted by rank(A).

Let us have a closer look at the numbers we can now attach to any matrix.

4.3.6 Example
Consider  −1 4 3 0

2 −4 −4 2
2 8 2 8

 .
What is the nullity and what is the rank of A?
For determining both numbers, we first need to find an equivalent matrix in
echelon form. It is easy to see that A is equivalent to 1 0 −1 2

0 2 1 1
0 0 0 0

 .
The previous matrix has two nonzero rows, so that rank(A) = 2. On the
other hand, if we associate A with a homogeneous system, we see that there
are two free variables, hence nullity(A) = 2.

It is not by coincidence, that the nullity and the rank turned out to be 2 and
2. Here is why:

4.3.7 Theorem (!Rank-Nullity Theorem!)
Let A be an (n,m)-matrix. Then

rank(A) + nullity(A) = m.

Proof: Assume WLOG, that A is in echelon form. We have already
seen that the number of pivot columns is equal to the rank of A. On the
other hand, each nonpivot column corresponds to a free variable. Hence the
number of nonpivot columns equals the nullity of A. But the number of
pivot columns plus the number of nonpivot columns is equal to the number
of columns which is m. This translates to ’the rank plus the nullity equals
m’. �
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4.3.8 Example
Let A be a (3, 15)-matrix.
- The maximum rank of A is 3.
- The minimum nullity of A is 12.
In particular, the homomorphism that sends a vector u ∈ R15 to Au (∈ R3)
cannot be injective, because the nullity of A is at the same time the dimension
of the kernel of that homomorphism.

Let us apply the previous theorem to homomorphisms.

4.3.9 Theorem
Let T : Rm → Rn be a homomorphism. Then

dim(ker(T )) + dim(range(T )) = m.

Proof: Let A be the associated matrix to T . The nullity of A equals the
dimension of the kernel of T . Moreover, the range of T equals the span of the
columns of A, which is by definition col(A). Hence, the statement follows.

�

4.3.10 Theorem
Let A be an (n,m)-matrix and b be a vector in Rn.
(a) The system Ax = b is consistent, if and only if b is col(A).
(b) The system Ax = b has a unique solution, if and only if b is in col(A)
and the columns of A are linearly independent.

Proof: (a) This is true by Theorem 2.3.10 and the fact that any vector of
the form Au is a linear combination of the columns of A, hence in col(A).
(b) By (a) we have at least one solution, by Theorem 2.4.10, we have at most
one solution, hence a unique solution. �

4.3.11 Theorem (Big Theorem, Version 6)
Let A := {a1, a2, . . . , an} be a set of n vectors in Rn, let A =

[
a1 . . . an

]
,

and let T : Rn → Rn be given by T (x) = Ax. Then the following are
equivalent:
(a) A spans Rn.
(b) A is linearly independent.
(c) Ax = b has a unique solution for any b ∈ Rn.
(d) T is surjective.
(e) T is injective.
(f) A is invertible.



Row and Column Spaces 93

(g) ker(T ) = {0}.
(h) null(A) = {0}.
(i)A is a basis for Rn.
(j) col(A) = Rn.
(k) row(A) = Rn.
(l) rank(A) = n.

Proof: With version 5 we had already the equivalences (a)-(h). By Theorem
4.3.4 and Definition 4.3.5, we see that (i)-(k) are equivalent. Moreover, (a)
and (i) are obviously equivalent as it states the same. �
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Chapter 5

Determinants

5.1 The Determinant Function

We have already attached to numbers to a matrix, such as the rank and the
nullity. In this chapter, we will introduce yet another powerful number to a
square matrix - the determinant.
Before defining this new term we need to introduce some technicalities.

5.1.1 Definition
Let A be an (n, n)-matrix. Then Mij denotes the (n− 1, n− 1)-matrix that
we get from A by deleting the row and the column containing the entry aij.

5.1.2 Example
Determine M2,3 and M2,4 for the following matrix.

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16


The entry a2,3 is equal to 7. We therefore have

M2,3 =

 1 2 4
9 10 12

13 14 16

 .
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The entry a2,4 is equal to 8, hence

M2,4 =

 1 2 3
9 10 11

13 14 15


5.1.3 Definition (Determinant, Cofactor)
(a) Let A = [a11] be a (1, 1)-matrix. Then the determinant of A is given
by

det(A) =| a11 |:= a11.

(b) Let

A =

[
a11 a12
a21 a22

]
be a (2, 2)-matrix. Then the determinant of A is given by

det(A) =

∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ = a11a22 − a12a21.

(c) Let

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


be a (3, 3)-matrix. Then the determinant of A is given by

det(A) =

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
= a11a22a33 + a12a23a31 + a31a21a32 − a13a22a31 − a23a32a11 − a33a12a21.

(d) Let A be an (n, n)-matrix and let aij be its (i, j)th entry. Then the
cofactor Cij of aij is given by

Cij = (−1)i+j det(Mij).

The determinant det(Mij) is called the minor of aij.
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(e) Let n be an integer and fix either some 1 ≤ i ≤ n or 1 ≤ j ≤ n. Let

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann


be an (n, n) matrix. Then the determinant of A is given by
either
(i) det(A) = ai1Ci1 + ai2Ci2 + . . . + ainCin, where Cij are the cofactors of
ai1, ai2, . . . , ain, respectively, (’Expand across row i’),
or
(ii) det(A) = a1jC1j + a2jC2j + . . .+ anjCnj,
where Cij are the cofactors of a1j, a2j, . . . , anj, respectively, (’Expand down
column j’).
These formulas are referred to collectively as the cofactor expansions.

5.1.4 Remark
Note that the definition of a general determinant is used recursively, because
in its definition it is reduced to the determinant of an (n− 1, n− 1)-matrix.

5.1.5 Example
Find det(A) for

A =


3 0 −2 −1
−1 2 5 4

6 0 −5 −3
−6 0 4 2


Let us first find the M1j’s.

M1,1 =

 2 5 4
0 −5 −3
0 4 2

 M1,2 =

 −1 5 4
6 −5 −3
−6 4 2



M1,3 =

 −1 2 4
6 0 −3
−6 0 2

 M1,4 =

 −1 2 5
6 0 −5
−6 0 4


We can now use the formula of Definition 5.1.3(c), to get:
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det(M1,1) = −5 · 2 · 2− 3 · 5 · 0 + 4 · 0 · 4− 4 · (−5) · 0− 4 · (−3) · 2− 2 · 0 · 5 = 4

det(M1,2) = 10 + 90 + 96− 120− 12− 60 = 4

det(M1,3) = 0 + 36 + 0− 0− 0− 24 = 12

det(M1,4) = 0 + 60 + 0− 0− 0− 48 = 12

Using Definition 5.1.3(d), we get

det(A) = 3·(−1)1+1·4+0·(−1)1+2·4+(−2)·(−1)1+3(12)+(−1)·(−1)1+4·12 = 12−24+12 = 0.

Now that we have understood the consept of calculating the determinant of
a matrix, we give a generalized version of such a calculation. This comes in
very handy, if there are rows or columns with many zeros.

5.1.6 Theorem
For any integer n we have det(In) = 1.

Proof: We proof that by induction.
n = 1: We have I1 = [1], so that det(I1) = 1.
Let the statement be true for n− 1. Then

det(In) = 1·C1,1+0·C1,2+. . .+0·C1,n = C1,1 = (−1)2 det(M1,1) = det(M1,1).

But M1,1 = In−1, and using the assumption of the induction, we get

det(In) = det(M1,1) = det(In−1) = 1.

�
Why bothering with introducing a complicated formula all around the entries
of a square matrix? Because the determinant features some really powerful
tools and properties attached to matrices. Here are a few:

5.1.7 Theorem
Let A,B be (n, n)-matrices.
(a) A is invertible, if and only if det(A) 6= 0.
(b) det(A ·B) = det(A) · det(B).
(c) If A is invertible, then

det(A−1) =
1

det(A)
.
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(d) det(At) = det(A).
�

5.1.8 Example
Find the determinant of

A =


−2 1 0 13

1 1 0 7
−7 3 0 2

2 1 0 9


We expand down the third column, which gives us:
det(A) = 0 ·C1,3 +0 ·C2,3 +0 ·C3,3 +0 ·C4,3 = 0, hence we see that the matrix
is not invertible.

What did we learn from the previous example?

5.1.9 Theorem
Let A be a square matrix.
(a) If A has a zero column or zero row, then det(A) = 0.
(b) If A has two identical rows or columns then det(A) = 0.

Proof: (a) Is clear by Theorem ??.
(b) We use induction.
The statement makes only sense for n ≥ 2.
Let A is a (2, 2)-matrix with two identical rows or columns. WLOG let A
have two identical rows, so that [

a b
a b

]
.

Hence, det(A) = ab− ab = 0.
Let the assertion be true for n − 1 and assume that A is an (n, n)-matrix
with two identical rows. Take a row that is different from those two identical
ones and expand across this row. We will get a sum of determinants of
(n − 1, n − 1)-matrices with two identical rows. We thus have by induction
a sum of zeros. �
There is one special case when calculating the determinant is particularly
easy.
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5.1.10 Theorem
Let A be a triangular (n, n)-matrix. Then det(A) is the product of the terms
along the diagonal.

Proof: We use induction. If n = 1, then the statement is trivial. Let the
statement be true for n−1 and assume that WLOG A is an upper triangular
(n, n)-matrix. We expand down the first column. This will get to

det(A) = a1,1 · C1,1.

C1,1 is the determinant of an upper triangular (n − 1, n − 1)-matrix. By
induction, the statement follows. �

5.1.11 Theorem (The Big Theorem, Version 7)
Let A := {a1, a2, . . . , an} be a set of n vectors in Rn, let A =

[
a1 . . . an

]
,

and let T : Rn → Rn be given by T (x) = Ax. Then the following are
equivalent:
(a) A spans Rn.
(b) A is linearly independent.
(c) Ax = b has a unique solution for any b ∈ Rn.
(d) T is surjective.
(e) T is injective.
(f) A is invertible.
(g) ker(T ) = {0}.
(h) null(A) = {0}.
(i) A is a basis for Rn.
(j) col(A) = Rn.
(k) row(A) = Rn.
(l) rank(A) = n.
(m) det(A) 6= 0.

Proof: We have already the equivalences (a)-(k). The equivalence (l) is
included by Theorem 5.1.7


