Math 462

This week we will discuss partially ordered sets. Please read the lecture notes as well as Chapter 2 in the book.

Written Assignments Due Friday, 1/20/17.

- 1. (a) Let \leq_1 and \leq_2 be two partial orders on a set X. Define a new relation \leq on X by $x \leq y$ if and only if both $x \leq_1 y$ and $x \leq_2 y$ hold. Prove that \leq is also a partial order.
 - (b) Let (X_1, \leq_1) and (X_2, \leq_2) be partially ordered sets. Define a relation \leq on the set $X_1 \times X_2 = \{(x_1, x_2) : x_1 \in X_1, x_2 \in X_2\}$ by $(x_1, x_2) \leq (x'_1, x'_2)$ if and only if $x_1 \leq_1 x'_1$ and $x_2 \leq_2 x'_2$ hold. Prove that \leq is also a partial order.
- 2. Consider the set $[m] \times [n] = \{(i, j) : i \in [m] \text{ and } j \in [n]\}$, and let \leq be the relation on $[m] \times [n]$ defined by $(i, j) \leq (i', j')$ if i = i' and $j \leq j'$.
 - (a) Prove that \leq is a partial order on $[m] \times [n]$.
 - (b) Draw the Hasse diagram of the above poset, P.
 - (c) Compute $\alpha(P)$. Explain your answer!
- 3. (a) Prove that $\omega(\mathcal{B}_n) = n + 1$. (This is #2 from §2.4.)
 - (b) Let P be the poset of numbers $\{1, 2, ..., n\}$ ordered by divisibility. What is $\omega(P)$?
- 4. (a) Find the number of 2-element chains in \mathcal{B}_n .
 - (b) Find the number of 2-element independent sets in \mathcal{B}_n .