This week we will discuss partially ordered sets. Please read the lecture notes as well as Chapter 2 in the book.

Written Assignments Due Friday, 1/20/17.

1. (a) Let \leq_{1} and \leq_{2} be two partial orders on a set X. Define a new relation \leq on X by $x \leq y$ if and only if both $x \leq_{1} y$ and $x \leq_{2} y$ hold. Prove that \leq is also a partial order.
(b) Let $\left(X_{1}, \leq_{1}\right)$ and $\left(X_{2}, \leq_{2}\right)$ be partially ordered sets. Define a relation \leq on the set $X_{1} \times X_{2}=\left\{\left(x_{1}, x_{2}\right): x_{1} \in X_{1}, x_{2} \in X_{2}\right\}$ by $\left(x_{1}, x_{2}\right) \leq\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ if and only if $x_{1} \leq_{1} x_{1}^{\prime}$ and $x_{2} \leq_{2} x_{2}^{\prime}$ hold. Prove that \leq is also a partial order.
2. Consider the set $[m] \times[n]=\{(i, j): i \in[m]$ and $j \in[n]\}$, and let \preceq be the relation on $[m] \times[n]$ defined by $(i, j) \preceq\left(i^{\prime}, j^{\prime}\right)$ if $i=i^{\prime}$ and $j \leq j^{\prime}$.
(a) Prove that \preceq is a partial order on $[m] \times[n]$.
(b) Draw the Hasse diagram of the above poset, P.
(c) Compute $\alpha(P)$. Explain your answer!
3. (a) Prove that $\omega\left(\mathcal{B}_{n}\right)=n+1$. (This is $\# 2$ from $\S 2.4$.)
(b) Let P be the poset of numbers $\{1,2, \ldots, n\}$ ordered by divisibility. What is $\omega(P)$?
4. (a) Find the number of 2 -element chains in \mathcal{B}_{n}.
(b) Find the number of 2 -element independent sets in \mathcal{B}_{n}.
