This week we will discuss the Sperner theorem (see §7.2) and the Erdős-Ko-Rado theorem. Please read the lecture notes as well as take a look at $\S 7.2$ in the book.

Written Assignments Due Friday, 1/27/17.

1. Let k, l be natural numbers. Prove that every sequence of real numbers of length $k l+1$ contains a nondecreasing subsequence of length $k+1$ or a decreasing subsequence of length $l+1$. (This is \#4 from §2.4. Hint: mimic the proof of the Erdős-Szekers theorem.)
2. Let $a_{1}, a_{2}, \ldots, a_{n}$ be real numbers satisfying $a_{i} \geq 1$ (for $i=1,2, \ldots, n$). We want to choose as many partial sums of a_{i} 's, i.e., expressions of the form $a_{i_{1}}+\cdots+a_{i_{k}}$, where $1 \leq i_{1}<i_{2}<\cdots<$ $i_{k} \leq n$ as possible so that the values of every two of chosen sums differ from each other by less than 1. Show that we cannot choose more than $\binom{n}{\lfloor n / 2\rfloor}$ such partial sums.
Hint: if $a_{i_{1}}+\cdots+a_{i_{k}}$ and $a_{j_{1}}+\cdots+a_{j_{p}}$ are among the chosen sums, can $\left\{i_{1}, \ldots, i_{k}\right\}$ be a subset of $\left\{j_{1}, \ldots, j_{p}\right\}$?
3. Let $1 \leq k \leq n / 2$ and let \mathcal{F} be an independent family of subsets of $[n]$ all of whose elements have size at most k (i.e., $|F| \leq k$ for all $F \in \mathcal{F}$). Show that $|\mathcal{F}| \leq\binom{ n}{k}$.
Hint: the LYM inequality might be helpful.
4. Prove the following extensions of the LYM inequality.
(a) Let \mathcal{F} be a family of subsets of $[n]$ not containing any $k+1$ nested sets: $F_{1} \subset F_{2} \ldots \subset F_{k+1}$. Show that

$$
\sum_{F \in \mathcal{F}} \frac{1}{\binom{n}{|F|}} \leq k
$$

Hint: note that every maximal chain in \mathcal{B}_{n} contains at most k elements of \mathcal{F}.
(b) Let \mathcal{F} be a family of subsets of $[n]$ that contains no two elements $A \supseteq B$ with $|A-B| \geq k$. Prove that

$$
\sum_{F \in \mathcal{F}} \frac{1}{\binom{n}{|F|}} \leq k
$$

