This week we will discuss the Sperner theorem (see $\S7.2$) and the Erdős-Ko-Rado theorem. Please read the lecture notes as well as take a look at \$7.2 in the book.

Written Assignments Due Friday, 1/27/17.

- 1. Let k, l be natural numbers. Prove that every sequence of real numbers of length kl + 1 contains a nondecreasing subsequence of length k + 1 or a decreasing subsequence of length l + 1. (This is #4 from §2.4. **Hint:** mimic the proof of the Erdős-Szekers theorem.)
- 2. Let a_1, a_2, \ldots, a_n be real numbers satisfying $a_i \ge 1$ (for $i = 1, 2, \ldots, n$). We want to choose as many partial sums of a_i 's, i.e., expressions of the form $a_{i_1} + \cdots + a_{i_k}$, where $1 \le i_1 < i_2 < \cdots < i_k \le n$ as possible so that the values of every two of chosen sums differ from each other by less than 1. Show that we cannot choose more than $\binom{n}{\lfloor n/2 \rfloor}$ such partial sums.

Hint: if $a_{i_1} + \cdots + a_{i_k}$ and $a_{j_1} + \cdots + a_{j_p}$ are among the chosen sums, can $\{i_1, \ldots, i_k\}$ be a subset of $\{j_1, \ldots, j_p\}$?

- 3. Let $1 \le k \le n/2$ and let \mathcal{F} be an independent family of subsets of [n] all of whose elements have size at most k (i.e., $|F| \le k$ for all $F \in \mathcal{F}$). Show that $|\mathcal{F}| \le {n \choose k}$. **Hint:** the LYM inequality might be helpful.
- 4. Prove the following extensions of the LYM inequality.
 - (a) Let \mathcal{F} be a family of subsets of [n] not containing any k+1 nested sets: $F_1 \subset F_2 \ldots \subset F_{k+1}$. Show that

$$\sum_{F \in \mathcal{F}} \frac{1}{\binom{n}{|F|}} \le k$$

Hint: note that every maximal chain in \mathcal{B}_n contains at most k elements of \mathcal{F} .

(b) Let \mathcal{F} be a family of subsets of [n] that contains **no** two elements $A \supseteq B$ with $|A - B| \ge k$. Prove that

$$\sum_{F \in \mathcal{F}} \frac{1}{\binom{n}{|F|}} \le k.$$