Math 124 Section H, Autumn 2014 Midterm Exam Number One: Solutions

1. (a) We can rewrite the limit as

$$
\lim _{x \rightarrow 0} \frac{\sin (4 x)}{x}+\lim _{x \rightarrow 0} \frac{9 x^{2}}{x}
$$

The first limit is 4 (one proof: multiply the numerator and denominator by 4 , then rewrite as $\lim _{t \rightarrow 0} 4 \sin (t) / t=4$.), and the second limit is 0 , so the answer is $4+0=4$.
(b) Write as

$$
\lim _{x \rightarrow 3} \sqrt{x} \frac{x-3}{e^{x}-e^{3}}=\sqrt{3}\left(\lim _{x \rightarrow 3} \frac{x-3}{e^{x}-e^{3}}\right)
$$

Hey, that's just $\sqrt{3}$ times the reciprocal of the derivative of e^{x} at $x=3$. So it's $\sqrt{3} / e^{3}$.
(c) Let's first find the limit of everything inside the $\tan (\quad)$:

$$
\lim _{x \rightarrow-\infty} \sqrt{9 x^{2}+\pi x}+3 x \cdot \frac{\sqrt{9 x^{2}+\pi x}-3 x}{\sqrt{9 x^{2}+\pi x}-3 x}=\lim _{x \rightarrow-\infty} \frac{\pi x}{\sqrt{9 x^{2}+\pi x}-3 x}
$$

The next part is tricky; remember that as x approaches $-\infty, \sqrt{x^{2}}=-x$.

$$
=\lim _{x \rightarrow-\infty} \frac{\pi x}{\sqrt{9 x^{2}+\pi x}-3 x} \cdot \frac{\frac{1}{x}}{\frac{1}{x}}=\lim _{x \rightarrow-\infty} \frac{\pi}{-\sqrt{9+\frac{\pi}{x}}-3}=-\frac{\pi}{6}
$$

And because $\tan (x)$ is continuous at $\pi / 6$, that means

$$
\lim _{x \rightarrow-\infty} \tan \left(\sqrt{9 x^{2}+\pi x}+3 x\right)=\tan \left(\lim _{x \rightarrow-\infty} \sqrt{9 x^{2}+\pi x}+3 x\right)=\tan \left(-\frac{\pi}{6}\right)=-\frac{1}{\sqrt{3}}
$$

2. Hey, it's an intermediate value theorem problem! What we really want is to find a solution to the equation

$$
f(x)=2^{x}+\sin (\pi x)-x^{2}-3=0
$$

The left side is a continuous function. Furthermore, $f(4)=-3$ and $f(5)=4$, so at some point in $[4,5]$ we have $f(x)=0$, which satisfies $2^{x}+\sin (\pi x)=x^{2}+3$.
3. Product rule!

$$
f^{\prime}(x)=-\sin (x)\left(e^{x}+3 x\right)+\cos (x)\left(e^{x}+3\right)
$$

Again!

$$
f^{\prime \prime}(x)=-\cos (x)\left(e^{x}+3 x\right)-2 \sin (x)\left(e^{x}+3\right)+\cos (x)\left(e^{x}\right)
$$

And finally,

$$
f^{\prime \prime}(\pi)=-\cos (\pi)\left(e^{\pi}+3 \pi\right)-2 \sin (\pi)\left(e^{\pi}+3\right)+\cos (\pi) e^{\pi}=3 \pi
$$

4. (a) The only place we might have a vertical asymptote in this function is when a denominator is zero. That means $x^{2}+2 x-8=0$ or $\cos (x)+5=0$. Well, $x^{2}+2 x-8=0$ when $x=-4$ or $x=2$, but only $x=-4$ is in the domain of that piece. And $\cos (x)+5$ is never zero, so we just have one vertical asymptote at $x=-4$. You can confirm this by taking $\lim _{x \rightarrow-4} f(x)$ from either side and, yup, it's infinite.
(b) To find horizontal asymptotes, we look at $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$:

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} f(x) & =\lim _{x \rightarrow-\infty} \frac{5}{x^{2}+2 x-8}=0 \\
\lim _{x \rightarrow \infty} f(x) & =\lim _{x \rightarrow \infty} \frac{e^{x}}{\cos (x)+5}=\infty
\end{aligned}
$$

Okay, so $y=0$ is the only horizontal asymptote.
(c) Let's use the hint and imagine that $(a, f(a))$, the correct point of tangency, is in that simple-looking middle piece. I sure hope this works!
On the one hand, the slope of the tangent line is $f^{\prime}(a)=4 a-3$. On the other hand, it's the slope of a line between $(0,-4.5)$ and $\left(a, 2 a^{2}-3 a+8\right)$. Set those equal:

$$
4 a-3=\frac{2 a^{2}-3 a+8-(-4.5)}{a-0}
$$

and solve to get $a= \pm 2.5$, so $a=2.5$ is the x-coordinate we want. So the slope is $f^{\prime}(2.5)=4(2.5)-3=7$, and with y-intercept -4.5 we've got the equation $y=7 x-4.5$.
5. (a) Yes, okay, I get it. (Some variations of this answer were accepted.)
(b) That's just $f^{\prime}(3)$, which we can clearly see is 4 .
(c) According to the quotient rule:

$$
g^{\prime}(-1)=\frac{f^{\prime}(-1) f^{\prime \prime}(-1)-f(-1) f^{\prime \prime \prime}(-1)}{\left(f^{\prime \prime}(-1)\right)^{2}}
$$

Then we just need to know that $f^{\prime}(-1)=2$ (by reading the graph), $f^{\prime \prime}(-1)=-1 / 3$ (because it's the slope of f^{\prime}), and $f^{\prime \prime \prime}(-1)=0$ (because the derivative of a linear function is constant, and the derivative of a constant is zero). So we get

$$
g^{\prime}(-1)=\frac{2 \cdot(-1 / 3)-f(-1) \cdot 0}{(-1 / 3)^{2}}=-6
$$

(d) Maybe! It could be continuous, and that jump in the derivative might just represent a cusp point-the slope coming from the left is different from the slope coming in from the right. But it also might be discontinuous: throwing in a hole or a jump discontinuity at that cusp point wouldn't affect the graph of the derivative.

