Math 124 Section H, Autumn 2014
Midterm Exam Number Two: Solutions

1. (a) Straightforward chain rule stuff. Remember that the derivative of 4* is In(4)4%, so:
Y = In(4)42+5(2)

(b) Use the chain rule a couple times. Be careful about the parentheses!
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(c) Take the natural log of both sides, then rewrite as In(y) = 2” In(x). Two ways to go
from here: either separately figure out the derivative of 2%, or take the natural log
again: In(In(y)) = In(2* In(z)) = zIn(z) + In(In(z))
Then we can differentiate both sides to get:
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2. Suppose (z(t),y(t)) = (e* + 4,sin(3t)) is the point of tangency. Then we can calculate the
slope of the tangent line in two ways: once by taking the slope between the above and
(4,0), and again by finding v/(¢)/2'(t). Set those equal and you’ve got:
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Which means:
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So tan(3t) = 1, so 3t = w/4 and t = w/12. Plug that in and you get a slope of so the

2em/4
tangent line is:




3. Okay, we want to use a tangent line approximation at 5 = 0.600256. That seems pretty
close to 5 = 0.6, and good news: the value at 5 = 0.6 is pretty easy to calculate:
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So all we need for the tangent line approximation is the slope at 3 = 0.6. Let’s take the
derivative (with respect to 3), and we’ve got (using the chain rule and the quotient rule):
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Plug in 8 = 0.6 and you've got:
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So the tangent line approximation is f, ~ 200 + ﬁ(ﬁ —0.6), and at 3 = 0.600256 we

get f, ~ 200 — 800(0.000256)/2.56 = 199.92.

4. Oh, good, it’s a closed interval and the function is continuous on that interval. So we
should find some critical numbers and plug them in to find the minimum and maximum.

We'll need f'(x):
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So the critical numbers are x = —2 and x = 2 (where f'(z) is undefined), as well as
x=—2/3.

Plugging everything (including the endpoints) into f(z) = /(z — 2)%(z + 2) we get:
f(=2) =0

f2)=0
f(3)=+h
(—2/3) = \/(—8/3)2(4/3) = 1/256/27 = \/9.something which is more than /5.

So 1/256/27 is the maximum.

5. See a modified picture on the next page:



g =2
We know that Nick makes a complete lap every 25 seconds, so i 2—; radians per
second. So:

Differentiate to get
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When Nick is 3 feet from the wall, cos(f) = 1/2, s0 § = 7/3 and sec? (Q) =3 So finally:
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So Nick’s shadow moves at 167 /25 feet per second.



