Math 124 Section H, Autumn 2014 Midterm Exam Number Two: Solutions

1. (a) Straightforward chain rule stuff. Remember that the derivative of 4^{x} is $\ln (4) 4^{x}$, so:

$$
y^{\prime}=\ln (4) 4^{2 x+5}(2)
$$

(b) Use the chain rule a couple times. Be careful about the parentheses!

$$
\frac{d y}{d x}=-\sin (x-\arctan (\sqrt{x+1}))\left(1-\frac{1}{1+(\sqrt{x+1})^{2}}\left(\frac{1}{2 \sqrt{x+1}}\right)\right)
$$

(c) Take the natural \log of both sides, then rewrite as $\ln (y)=x^{x} \ln (x)$. Two ways to go from here: either separately figure out the derivative of x^{x}, or take the natural \log again: $\ln (\ln (y))=\ln \left(x^{x} \ln (x)\right)=x \ln (x)+\ln (\ln (x))$
Then we can differentiate both sides to get:

$$
\frac{\frac{y^{\prime}}{y}}{\ln (y)}=\ln (x)+1+\frac{\frac{1}{x}}{\ln (x)}
$$

Or:

$$
\frac{y^{\prime}}{x^{x^{x}} \ln \left(x^{x^{x}}\right)}=\ln (x)+1+\frac{1}{x \ln (x)}
$$

So:

$$
y^{\prime}=\left(x^{x^{x}} \ln \left(x^{x^{x}}\right)\right)\left(\ln (x)+1+\frac{1}{x \ln (x)}\right)
$$

2. Suppose $(x(t), y(t))=\left(e^{3 t}+4, \sin (3 t)\right)$ is the point of tangency. Then we can calculate the slope of the tangent line in two ways: once by taking the slope between the above and $(4,0)$, and again by finding $y^{\prime}(t) / x^{\prime}(t)$. Set those equal and you've got:

$$
\frac{\sin (3 t)-0}{e^{3 t}+4-4}=\frac{3 \cos (3 t)}{3 e^{3 t}}
$$

Which means:

$$
\frac{\sin (3 t)}{\cos (3 t)}=1
$$

So $\tan (3 t)=1$, so $3 t=\pi / 4$ and $t=\pi / 12$. Plug that in and you get a slope of $\frac{\sqrt{2}}{2 e^{\pi / 4}}$ so the tangent line is:

$$
y=\frac{\sqrt{2}}{2 e^{\pi / 4}}(x-4)+0
$$

3. Okay, we want to use a tangent line approximation at $\beta=0.600256$. That seems pretty close to $\beta=0.6$, and good news: the value at $\beta=0.6$ is pretty easy to calculate:

$$
f_{o}=400 \sqrt{\frac{1-.6}{1+.6}}=400 \sqrt{\frac{0.4}{1.6}}=400 \sqrt{\frac{1}{4}}=200 \mathrm{THz}
$$

So all we need for the tangent line approximation is the slope at $\beta=0.6$. Let's take the derivative (with respect to β), and we've got (using the chain rule and the quotient rule):

$$
\frac{d f_{o}}{d \beta}=400 \frac{1}{2 \sqrt{\frac{1-\beta}{1+\beta}}} \frac{-(1+\beta)-(1-\beta)}{(1+\beta)^{2}}
$$

Plug in $\beta=0.6$ and you've got:

$$
\frac{d f_{o}}{d \beta}=400 \frac{1}{2 \sqrt{\frac{1}{4}}} \frac{-2}{1.6^{2}}=\frac{-800}{1.6^{2}}=\frac{-800}{2.56}
$$

So the tangent line approximation is $f_{o} \approx 200+\frac{-800}{2.56}(\beta-0.6)$, and at $\beta=0.600256$ we get $f_{o} \approx 200-800(0.000256) / 2.56=199.92$.
4. Oh, good, it's a closed interval and the function is continuous on that interval. So we should find some critical numbers and plug them in to find the minimum and maximum. We'll need $f^{\prime}(x)$:

$$
f^{\prime}(x)=\frac{2(x-2)(x+2)+(x-2)^{2}}{2 \sqrt{(x-2)^{2}(x+2)}}=\frac{3 x^{2}-4 x-4}{2 \sqrt{(x-2)^{2}(x+2)}}=\frac{(3 x+2)(x-2)}{2 \sqrt{(x-2)^{2}(x+2)}}
$$

So the critical numbers are $x=-2$ and $x=2$ (where $f^{\prime}(x)$ is undefined), as well as $x=-2 / 3$.
Plugging everything (including the endpoints) into $f(x)=\sqrt{(x-2)^{2}(x+2)}$ we get: $f(-2)=0$
$f(2)=0$
$f(3)=\sqrt{5}$
$f(-2 / 3)=\sqrt{(-8 / 3)^{2}(4 / 3)}=\sqrt{256 / 27}=\sqrt{9 . \text { something }}$ which is more than $\sqrt{5}$.
So $\sqrt{256 / 27}$ is the maximum.
5. See a modified picture on the next page:

We know that Nick makes a complete lap every 25 seconds, so $\frac{d \theta}{d t}=\frac{-2 \pi}{25}$ radians per second. So:

$$
\tan \left(\frac{\theta}{2}\right)=\frac{s}{12}
$$

Differentiate to get

$$
\sec ^{2}\left(\frac{\theta}{2}\right) \frac{1}{2} \frac{d \theta}{d t}=\frac{1}{12} \frac{d s}{d t}
$$

When Nick is 3 feet from the wall, $\cos (\theta)=1 / 2$, so $\theta=\pi / 3$ and $\sec ^{2}\left(\frac{\theta}{2}\right)=\frac{4}{3}$. So finally:

$$
\frac{d s}{d t}=12 \sec ^{2}\left(\frac{\theta}{2}\right) \frac{1}{2} \frac{-2 \pi}{25}=\frac{-16 \pi}{25}
$$

So Nick's shadow moves at $16 \pi / 25$ feet per second.

