Math 124 F - Autumn 2015 Midterm Exam Number One October 27, 2015

Name: \qquad Student ID no. : \qquad
\qquad Section: \qquad

1	15	
2	9	
3	7	
4	16	
5	13	
Total	60	

- This exam consists of FIVE problems on FIVE pages, including this cover sheet.
- Show all work for full credit.
- You do not need to simplify your answers.
- If you use a trial-and-error or guess-and-check method when a more rigorous method is available, you will not receive full credit.
- If you run out of room, write on the back of the page, but indicate that you have done so!
- You may use one hand-written double-sided $8.5^{\prime \prime}$ by $11^{\prime \prime}$ page of notes.
- You may use a scientific calculator. Calculators with graphing, differentiation, integration, or algebraic capabilities are not allowed.
- You have 80 minutes to complete the exam.

1. [5 points per part] Compute each limit. You may use any techniques you know. If a limit does not exist or is infinite, say so, and explain.
(a) $\lim _{x \rightarrow 8} \frac{\sqrt{x-4}+2}{x-3}=\frac{\sqrt{8-4}+2}{8-3}=\frac{4}{5}$

Direct substitution:
(b) $\lim _{t \rightarrow 0} \frac{\sin (a t)-b t+c t^{2}}{t}=\lim _{t \rightarrow 0} \frac{\sin (a t)}{t}+\lim _{t \rightarrow 0} \frac{-b t+c t^{2}}{t}$

$$
=\lim _{t \rightarrow 0} \frac{a \sin (a t)}{a t}+\lim _{t \rightarrow 0}(-b+c t)
$$

$$
=a-b
$$

(c) $\begin{gathered}\lim _{x \rightarrow \infty} \sin \left(\frac{\pi x+6}{\sqrt{4 x^{2}+2 x}+2 x}\right)=\sin \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2} \\ \left({ }_{x \rightarrow \infty} \frac{\pi x+6}{\sqrt{4 x^{2}+2 x}+2 x} \frac{\frac{1}{x}}{\frac{1}{x}}\right. \\ =\lim _{x \rightarrow \infty} \frac{\pi+\left(\frac{6}{x}\right)}{\sqrt{4+\left(\frac{2}{x}\right)+2}}=\frac{\pi}{4}\end{gathered}$
2. [9 points] Consider the curve $y=\sqrt{x}+4 x$.

Give the equation for a tangent line to this curve which is parallel to the line $y=5 x+4$.

$$
\begin{gathered}
y^{\prime}=\frac{1}{2 \sqrt{x}}+4=5 \\
\frac{1}{2 \sqrt{x}}=1 \\
\sqrt{x}=\frac{1}{2} \\
x=\frac{1}{4}
\end{gathered}
$$

Point of tangency:

$$
\left(\frac{1}{4}, \sqrt{\frac{1}{4}}+4\left(\frac{1}{4}\right)\right)
$$

$$
=\left(\frac{1}{4}, \frac{3}{2}\right)
$$

Point-slope formula:

$$
y=5\left(x-\frac{1}{4}\right)+\frac{3}{2}
$$

3. [7 points] Consider the function $f(x)=\sec (x)-x e^{x}$. Compute $f^{\prime \prime}(x)$.

$$
\begin{aligned}
& f^{\prime}(x)=\sec (x) \tan (x)-\left(e^{x}+x e^{x}\right) \\
& f^{\prime \prime}(x)=\sec (x) \tan ^{2}(x)+\sec ^{3}(x)-\left(e^{x}+e^{x}+x e^{x}\right) \\
& f^{\prime \prime}(x)=\sec (x)\left(\tan ^{2}(x)+\sec ^{2}(x)\right)-(2+x) e^{x}
\end{aligned}
$$

4. Consider the following multipart function:

$$
f(x)= \begin{cases}a e^{x}+b \cos (x)+3 x & \text { if } x \leq 0 \\ \frac{x+5}{x^{2}-2 x+1} & \text { if } x>0\end{cases}
$$

(a) [10 points] Determine constants a and b so that $f(x)$ is differentiable at $x=0$.

Also: $\lim _{x \rightarrow 0^{-}} f^{\prime}(x)=\lim _{x \rightarrow 0^{-}}\left(a e^{x}-b \sin (x)+3\right)=a+3$

$$
\lim _{x \rightarrow 0^{+}} f^{\prime}(x)=\lim _{x \rightarrow 0^{+}} \frac{(1)\left(x^{2}-2 x+1\right)-(2 x-2)(x+5)}{\left(x^{2}-2 x+1\right)^{2}}=11
$$

Solve:
$a+b=5$

$$
a+3=11
$$

(b) [6 points] Find all horizontal asymptotes of $f(x)$.

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty}\left(a e^{x}+b \cos (x)+3 x\right)=-\infty, \text { no H.A. to the left. } \\
& \lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty}\left(\frac{x+5}{x^{2}-2 x+1}\right)=0 \text {, so } y=0 \text { is a H.A. }
\end{aligned}
$$

5. The graph of $f(x)$ is shown below.

Cool graph, right? Use it to answer the following questions.
(a) [3 points] Compute $\lim _{x \rightarrow-3}[f(x) \cdot f(x+1)]=6$

$$
\begin{array}{ll}
\downarrow & \downarrow \\
3 & 2
\end{array}
$$

(b) [3 points] For what constant c does $\lim _{x \rightarrow 3} \frac{f(x)-c}{x-3}$ exist?

$$
\begin{gathered}
\lim _{x \rightarrow 3} \frac{f(x)-c}{x-3} \rightarrow 2.5-c \\
\text { so } 2.5-c=0 \text { or the limit DNE. } \\
\\
c=2.5
\end{gathered}
$$

(c) [3 points] Compute the limit from part (b), using the value of c you chose.

$$
\text { Wait, } \lim _{x \rightarrow 3} \frac{f(x)-2.5}{x-3}=f^{\prime}(3)=\frac{-1}{2}
$$

(d) [4 points] Let $g(x)=\frac{f^{\prime}(x)}{f(x)}$. What is $g^{\prime}(7)$?

Quotient rule: $g^{\prime}(7)=\frac{f^{\prime \prime}(7) f(7)-f^{\prime}(7) f^{\prime}(7)}{[f(7)]^{2}}$

$$
\begin{aligned}
& f(7)=3 \\
& f^{\prime}(7)=2 \\
& f^{\prime \prime}(7)=0 \quad \text { constant slope, }
\end{aligned}
$$

$$
=\frac{0(3)-2^{2}}{3^{2}}=\frac{-4}{9}
$$

