Math 120 A - Autumn 2016 Midterm Exam Number One October 20th, 2016

Name: \qquad Student ID no. : \qquad
Signature: \qquad Section: \qquad

1	15	
2	15	
3	8	
4	8	
5	14	
Total	60	

- This exam consists of FIVE problems on FIVE pages, including this cover sheet.
- Show all work for full credit.
- You may use a TI-30X IIS calculator during this exam. Other calculators and electronic device are not permitted.
- You do not need to simplify your answers.
- If you use a trial-and-error or guess-and-check method when a more rigorous method is available, you will not receive full credit.
- If you write on the back of the page, please indicate that you have done so!
- You may use one hand-written double-sided $8.5^{\prime \prime}$ by $11^{\prime \prime}$ page of notes.
- You have 50 minutes to complete the exam.

1. [15 points] Candela stands 10 meters west and 16 meters south of a gym. Spark stands 3 meters east and 11 meters north of the gym.
Candela walks due east until she is 17.8 meters away from the gym. Then, she turns and walks in a straight line towards Spark.
How close does Candela get to the gym?

Where is this?

$$
x^{2}+(-16)^{2}=17.8^{2}
$$

$$
x=97.8
$$

Need perpendicular to path.

$$
\begin{aligned}
& y=\frac{5}{2}(x-3)+11 \quad y=\frac{-2}{5} x \\
& \frac{5}{2}(x-3)+11=\frac{-2}{5} x \\
& 25 x-75+110=-4 x \\
& 29 x=-35 \\
& x=\frac{-35}{29} \\
& y=\frac{-2}{5}\left(\frac{-35}{29}\right)=\frac{14}{29}
\end{aligned}
$$

So, closest point is $\left(\frac{-35}{29}, \frac{14}{29}\right)$, and distance to origin is:

$$
d=\sqrt{\left(\frac{-35}{29}\right)^{2}+\left(\frac{14}{29}\right)^{2}} \approx 1.2999 \text { meters }
$$

2. [5 points per part] Luke and Reva begin walking in the $x y$-plane at constant speeds at the same time.

Luke walks from $(3,5)$ to $(-2,4)$ in a straight line, reaching it in 10 seconds.
Reva walks from $(-4,6)$ in a straight line. When Luke crosses the y-axis, Reva is at $(4,1)$.
(a) Write parametric equations for Luke's position, t seconds after he starts walking.

$$
\left.\begin{array}{ll}
x_{0}=3 & y_{0}=5 \\
x_{1}=-2 & y_{1}=4 \\
\Delta x=-5 & \Delta y=-1 \\
\Delta t=10
\end{array}\right\} \begin{aligned}
& x=3-\frac{5}{10} t \\
& y=5-\frac{1}{10} t
\end{aligned}
$$

(b) Write parametric equations for Reva's position, t seconds after she starts walking. When is this? $\quad x=3-\frac{5}{10} t=0$

$$
\begin{aligned}
& 3=\frac{1}{2} t \\
& t=6
\end{aligned}
$$

$$
\left.\begin{array}{ll}
x_{0}=-4 & y_{0}=6 \\
x_{1}=4 & y_{1}=1 \\
\Delta x=8 & \Delta y=-5
\end{array}\right\} \begin{aligned}
& x=-4+\frac{8}{6} t \\
& y=6-\frac{5}{6} t
\end{aligned}
$$

(c) When is Luke directly east of Reva?

$$
\begin{aligned}
& y \text {-coordinates are equal: } \\
& 5-\frac{1}{10} t=6-\frac{5}{6} t \\
& \left(\frac{5}{6}-\frac{1}{10}\right) t=1 \\
& \frac{44}{60} t=1 \\
& t=\frac{60}{44}=\frac{15}{11} \text { seconds }
\end{aligned}
$$

3. [8 points] Consider the following multipart function f :

$$
f(x)= \begin{cases}0 & \text { if } x \leq 0 \\ x+5 & \text { if } 0<x<4 \\ x^{2}+6 & \text { if } x \geq 4\end{cases}
$$

Find all solutions to the equation $f(x)=x^{2}-1$.

$$
\text { Two solutions: } x=-1 \text { or } 3
$$

4. [8 points] Find all values of d such that the vertex of $y=\underset{a}{d} x^{2}+\underset{b}{5} x+\underbrace{d+1}_{c}$ is on the x-axis.

$$
\begin{gathered}
c-\frac{b^{2}}{4 a}=0 \\
d+1-\frac{5^{2}}{4 d}=0 \\
4 d(d+1)=\left(\frac{25}{4 d}\right) 4 d \\
4 d^{2}+4 d=25 \\
4 d^{2}+4 d-25=0 \\
d=\frac{-4 \pm \sqrt{16-4(4)(-25)}}{8} \approx=\begin{array}{c}
-3.0495 \\
2.0495
\end{array}
\end{gathered}
$$

5. [14 points] Ken sells sweaters. His profit is a quadratic function of the price he charges. If he gives the sweaters away for free, he will lose $\$ 100$.
If he charges $\$ 10$ per sweater, he will earn $\$ 80$.
If he charges $\$ 20$ per sweater, he will earn $\$ 180$.
profit How much will he earn by charging $\$ 33$ per sweater?

$$
\begin{array}{lrl}
x=0, y=-100: & -100=c \\
x=10, y=80: & 80=100 a+10 b+c \rightarrow & 80=100 a+10 b-100 \rightarrow 10 b=1 \\
x=20, y=180: & 180=400 a+20 b+c \rightarrow & 180=400 a+20 b-100 \\
& & 180=400 a+20(18-10 a)-100 \\
& & -80=200 a \\
& a=-0.4
\end{array}
$$

$$
\text { So: } \quad y=-0.4 x^{2}+22 x-100
$$

And when $x=33, y=-0.4(33)^{2}+22(33)-100=190.4$

$$
S_{0}: \$ 190.40
$$

