Math 125 H - Winter 2015
 Midterm Exam Number One January 29, 2015

Name: \qquad Student ID no. : \qquad

Signature: \qquad Section: \qquad

1	12	
2	10	
3	7	
4	6	
5	8	
6	5	
7	12	
Total	60	

θ	$\sin (\theta)$	$\cos (\theta)$	$\tan (\theta)$
0	0	1	0
$\pi / 6$	$1 / 2$	$\sqrt{3} / 2$	$1 / \sqrt{3}$
$\pi / 4$	$\sqrt{2} / 2$	$\sqrt{2} / 2$	1
$\pi / 3$	$\sqrt{3} / 2$	$1 / 2$	$\sqrt{3}$
$\pi / 2$	1	0	-

- This exam consists of SEVEN problems on SIX pages, including this cover sheet.
- Show all work for full credit.
- You do not need to simplify your answers.
- If you use a trial-and-error or guess-and-check method when a more rigorous method is available, you will not receive full credit.
- If you write on the back of the page, please indicate that you have done so!
- You may use one hand-written double-sided $8.5^{\prime \prime}$ by $11^{\prime \prime}$ page of notes.
- You have 80 minutes to complete the exam.

1. [4 points per part] Evaluate each integral. You may use any techniques you know.
(a) $\int\left(e^{3 x}-\sin ^{2}(x) \cos (x)\right) d x$
(b) $\int \frac{\sec ^{2}\left(\ln \left(x^{2}\right)\right)}{x} d x$
(c) $\int x^{3} \sqrt{x^{2}+4} d x$
2. [10 points] A particle is moving along the x-axis.

At time $t \geq 0$ seconds, its acceleration is given by $a(t)=2 t-8$.
At time $t=0$ it's at $x=3$, and at time $t=3$ it's at $x=21$.
In the first 8 seconds, what is the total distance traveled by the particle?
3. [7 points] Let \mathcal{R} be the region bounded by $y=\ln (x+1)$, the y-axis, and the line $y=2$. Compute the volume of the solid obtained by revolving \mathcal{R} around the y-axis.
4. [6 points] Use any techniques you'd like to compute the following limit:

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \tan \left(\frac{i \pi}{3 n}\right) \frac{\pi}{12 n}
$$

5. [8 points] Compute the area of the region bounded by $y=x, y=\frac{x+1}{x^{2}+1}$, and the y-axis.
6. [5 points] Consider the following function $f(x)$:

$$
f(x)= \begin{cases}2+\sqrt{9-x^{2}} & \text { if } 0 \leq x \leq 3 \\ 8-2 x & \text { if } 3<x \leq 4\end{cases}
$$

Compute $\int_{0}^{4} f(x) d x$.
7. [4 points per part] You awake to a large commotion outside your window.
"It's the graph question," cries a youth. "Jonah wrote another graph question!"
A church bell chimes, and a parade makes its way through the plaza. This is a good day.

(a) Let $h(x)=\int_{e^{x}}^{x} \cos (\pi t) f(t) d t$. Compute $h^{\prime}(0)$.
(b) Compute $\int_{1}^{2} 2^{t} f\left(2^{t}+1\right) d t$.
(c) Suppose the area under $f(t)$ from -4 to 2 is revolved around the horizontal axis.

Write (but don't evaluate) an integral for the resulting volume, and compute the M_{3} approximation of that integral.

