Math 125 H - Winter 2015 Midterm Exam Number Two February 26, 2015

Name: \qquad Student ID no. : \qquad

Signature: \qquad Section: \qquad

1	14	${ }_{0}{ }_{0}$				
2	14		singe	${ }_{\text {cose }}$		${ }^{\text {tanal(t) }}$
3	8					
4	6		$1 /$		彦/2	$1 / \sqrt{3}$
5	12				1/2	$\sqrt{3}$
6	6		21		0	
Total	60					

- The exam consists of SIX problems on SIX pages, including this cover sheet.
- Show all work for full credit.
- You do not need to simplify your answers.
- If you use a trial-and-error or guess-and-check method when a more rigorous method is available, you will not receive full credit.
- If you write on the back of the page, please indicate that you have done so!
- You may use one hand-written double-sided $8.5^{\prime \prime}$ by $11^{\prime \prime}$ page of notes.
- You have 80 minutes to complete the exam.

1. [7 points per part] Here are a bunch of integrals. Evaluate them.
(a) $\int 3 \sin ^{4}(x) \cos ^{5}(x) d x$.
(b) $\int \sin (2 x) e^{3 x} d x$
2. [7 points per part] Good news! We haven't run out of integrals yet.
(a) $\int_{2}^{3} \frac{2 x^{2}+9 x-3}{x^{3}-x^{2}+x-1} d x$
(b) $\int_{-1}^{0} \frac{x}{\left(-x^{2}-2 x+3\right)^{5 / 2}} d x$
3. [8 points] Let $f(x)$ be a function such that $f(x)>0$ on the interval $(0, \infty)$, and $f(x)$ is continuous on the interval $[0, \infty)$.

Let \mathcal{R} be the region in the first quadrant bounded by $y=f(x), x=0$, and $x=a$.
Let \mathcal{S}_{x} be the solid formed by revolving \mathcal{R} around the x-axis, and let \mathcal{S}_{y} be the solid formed by revolving \mathcal{R} around the y-axis.

Find a function $f(x)$ such that for all $a>0$, the solids \mathcal{S}_{x} and \mathcal{S}_{y} are equal in volume.
4. [6 points] Use Simpson's Rule with $n=6$ to estimate the average value of $f(x)=2^{\left(x^{2}-3\right)}$ on the interval $[-4,8]$. You do not need to simplify your answer!
5. [12 points] The front of an aquarium tank is shaped like the region in the first quadrant bounded by $y=1$ and $x=\frac{1}{y^{2}-11 y+28}$.
The aquarium itself is a prism, and the two bases are w meters apart.
The tank is filled with a liquid of density D. Let g be the acceleration due to gravity.

Compute the work needed to empty the tank by pushing all the liquid to the very top. (Your answer will include w, D, and g.)
6. [6 points] Does the integral $\int_{0}^{\infty} \frac{\sin ^{2}(x)}{x^{2}+\sqrt{x}} d x$ converge or diverge? Explain.

I feel like you probably don't need a whole page for that problem, so here's a Sudoku. Boxes with slashes contain two digits, with the lower number on top.

