Math 125 H - Winter 2015 Midterm Exam Number Two February 26, 2015

Name: _____

Student ID no. : _____

Signature: _____

Section:

1	14	
2	14	
3	8	
4	6	
5	12	
6	6	
Total	60	

θ	$\sin(\theta)$	$\cos(\theta)$	$\tan(\theta)$
0	0	1	0
$\pi/6$	1/2	$\sqrt{3}/2$	$1/\sqrt{3}$
$\pi/4$	$\sqrt{2}/2$	$\sqrt{2}/2$	1
$\pi/3$	$\sqrt{3}/2$	1/2	$\sqrt{3}$
$\pi/2$	1	0	_

- The exam consists of SIX problems on SIX pages, including this cover sheet.
- Show all work for full credit.
- You do not need to simplify your answers.
- If you use a trial-and-error or guess-and-check method when a more rigorous method is available, you will not receive full credit.
- If you write on the back of the page, please indicate that you have done so!
- You may use one hand-written double-sided 8.5" by 11" page of notes.
- You have 80 minutes to complete the exam.

1. **[7 points per part]** Here are a bunch of integrals. Evaluate them.

(a)
$$\int 3\sin^4(x)\cos^5(x) \, dx$$
.

(b)
$$\int \sin(2x)e^{3x} dx$$

2. **[7 points per part]** Good news! We haven't run out of integrals yet.

(a)
$$\int_{2}^{3} \frac{2x^2 + 9x - 3}{x^3 - x^2 + x - 1} dx$$

(b)
$$\int_{-1}^{0} \frac{x}{(-x^2 - 2x + 3)^{5/2}} dx$$

3. [8 points] Let f(x) be a function such that f(x) > 0 on the interval $(0, \infty)$, and f(x) is continuous on the interval $[0, \infty)$.

Let \mathcal{R} be the region in the first quadrant bounded by y = f(x), x = 0, and x = a.

Let S_x be the solid formed by revolving \mathcal{R} around the *x*-axis, and let S_y be the solid formed by revolving \mathcal{R} around the *y*-axis.

Find a function f(x) such that for **all** a > 0, the solids S_x and S_y are equal in volume.

4. [6 points] Use Simpson's Rule with n = 6 to estimate the average value of $f(x) = 2^{(x^2-3)}$ on the interval [-4, 8]. You do not need to simplify your answer!

5. **[12 points]** The front of an aquarium tank is shaped like the region in the first quadrant bounded by y = 1 and $x = \frac{1}{y^2 - 11y + 28}$.

The aquarium itself is a prism, and the two bases are w meters apart.

The tank is filled with a liquid of density *D*. Let *g* be the acceleration due to gravity.

Compute the work needed to empty the tank by pushing all the liquid to the very top. (Your answer will include *w*, *D*, and *g*.)

6. [6 points] Does the integral $\int_0^\infty \frac{\sin^2(x)}{x^2 + \sqrt{x}} dx$ converge or diverge? Explain.

I feel like you probably don't need a whole page for that problem, so here's a Sudoku. Boxes with slashes contain two digits, with the lower number on top.

	3	5	1/	<u>⁄9</u>	
/					/
	7	9			5
8			2/	4	
					/
	/2	4	6	8	