Math 136: Homework 1 Due Thursday, March 29

- (1) Exercise 2.5 (p. 11).
- (2) Fix a positive integer n.
 - (a) Recall from Exercise 1.2 on p. 5 that an $n \times n$ matrix A is symmetric if $A = A^T$. Show that the collection of symmetric $n \times n$ matrices is a vector space.
 - (b) An $n \times n$ matrix A is called *antisymmetric* (or *skew-symmetric*) if $A = -A^T$ see Exercise 2.4. Show that the set of $n \times n$ antisymmetric matrices is a vector space.
 - (c) Show that the $n \times n$ zero matrix is the only matrix which is both symmetric and antisymmetric.
- (3) Fix a positive integer n and let A be an n × n matrix. The goal of this problem is to show that there exists a unique way to write A as a sum of a symmetric matrix X and an antisymmetric matrix Y.
 - (a) Show that $A + A^T$ is symmetric and $A A^T$ is antisymmetric.
 - (b) Find a symmetric matrix X and an antisymmetric matrix Y so that A = X + Y. (This is the first part of the goal: existence.)
 - (c) Show that if X' and Y' are any matrices with X symmetric and Y antisymmetric, and if A = X' + Y', then X' = X and Y' = Y (with X and Y from part (b)). (This is the second part of the goal: uniqueness.) Hint: if X + Y = X' + Y', then X X' = Y' Y.