Math 136: Homework 1

Due Thursday, March 29
(1) Exercise 2.5 (p. 11).
(2) Fix a positive integer n.
(a) Recall from Exercise 1.2 on p. 5 that an $n \times n$ matrix A is symmetric if $A=A^{T}$. Show that the collection of symmetric $n \times n$ matrices is a vector space.
(b) An $n \times n$ matrix A is called antisymmetric (or skew-symmetric) if $A=-A^{T}$ - see Exercise 2.4. Show that the set of $n \times n$ antisymmetric matrices is a vector space.
(c) Show that the $n \times n$ zero matrix is the only matrix which is both symmetric and antisymmetric.
(3) Fix a positive integer n and let A be an $n \times n$ matrix. The goal of this problem is to show that there exists a unique way to write A as a sum of a symmetric matrix X and an antisymmetric matrix Y.
(a) Show that $A+A^{T}$ is symmetric and $A-A^{T}$ is antisymmetric.
(b) Find a symmetric matrix X and an antisymmetric matrix Y so that $A=X+Y$. (This is the first part of the goal: existence.)
(c) Show that if X^{\prime} and Y^{\prime} are any matrices with X symmetric and Y antisymmetric, and if $A=X^{\prime}+Y^{\prime}$, then $X^{\prime}=X$ and $Y^{\prime}=Y$ (with X and Y from part (b)). (This is the second part of the goal: uniqueness.) Hint: if $X+Y=X^{\prime}+Y^{\prime}$, then $X-X^{\prime}=Y^{\prime}-Y$.

