Math 136: Homework 3 Due Thursday, April 12

(1) Let V be the vector space of infinitely differentiable functions on the interval [0, 1]. Show that the map $T: V \to V$ defined by

$$(Tf)(x) = \int_0^x f(t) \, dt$$

is a linear transformation. Prove that T is injective. Is T surjective? Explain your answer.

(2) Let V be the vector space of 2×2 matrices, let $A = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$, and define a linear transformation L by

$$L: V \to V,$$
$$B \mapsto BA.$$

Find a basis for the kernel of L.

- (3) The following exercises show that the set \mathbf{C} of complex numbers can be represented as a set of 2×2 matrices of a certain form.
 - (a) Show that the complex numbers **C** under addition and multiplication by real numbers can be viewed as a 2-dimensional vector space.
 - (b) Let M(2) denote the space of 2×2 matrices, and let $L : \mathbf{C} \to M(2)$ be the map defined by $L(x + iy) = \begin{pmatrix} x & y \\ -y & x \end{pmatrix}$. Verify that L is a linear transformation. (That is, $L(z_1 + z_2) = L(z_1) + L(z_2)$ and L(cz) = cL(z), for all $z_1, z_2, z \in \mathbf{C}$ and $c \in \mathbf{R}$.)
 - (c) Show that L satisfies the identity $L(z_1z_2) = L(z_1)L(z_2)$ for all $z_1, z_2 \in \mathbb{C}$.
 - (d) What is the rank of L? What does this tell you about the kernel and image of L?
- (4) Let A be a 3×3 upper triangular matrix:

$$A = \begin{pmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{pmatrix}$$

- (a) Prove that if adf = 0, then A is not invertible.
- (b) Prove that if $adf \neq 0$, then A is invertible, and compute its inverse.