Math 136: Homework 3
Due Thursday, April 12

(1) Let V be the vector space of infinitely differentiable functions on the interval $[0,1]$. Show that the map $T: V \rightarrow V$ defined by

$$
(T f)(x)=\int_{0}^{x} f(t) d t
$$

is a linear transformation. Prove that T is injective. Is T surjective? Explain your answer.
(2) Let V be the vector space of 2×2 matrices, let $A=\left(\begin{array}{cc}1 & 1 \\ -1 & -1\end{array}\right)$, and define a linear transformation L by

$$
\begin{aligned}
L: V & \rightarrow V \\
B & \mapsto B A .
\end{aligned}
$$

Find a basis for the kernel of L.
(3) The following exercises show that the set \mathbf{C} of complex numbers can be represented as a set of 2×2 matrices of a certain form.
(a) Show that the complex numbers \mathbf{C} under addition and multiplication by real numbers can be viewed as a 2 -dimensional vector space.
(b) Let $M(2)$ denote the space of 2×2 matrices, and let $L: \mathbf{C} \rightarrow M(2)$ be the map defined by $L(x+i y)=\left(\begin{array}{cc}x & y \\ -y & x\end{array}\right)$. Verify that L is a linear transformation. (That is, $L\left(z_{1}+z_{2}\right)=L\left(z_{1}\right)+L\left(z_{2}\right)$ and $L(c z)=c L(z)$, for all $z_{1}, z_{2}, z \in \mathbf{C}$ and $\left.c \in \mathbf{R}.\right)$
(c) Show that L satisfies the identity $L\left(z_{1} z_{2}\right)=L\left(z_{1}\right) L\left(z_{2}\right)$ for all $z_{1}, z_{2} \in$ C.
(d) What is the rank of L ? What does this tell you about the kernel and image of L ?
(4) Let A be a 3×3 upper triangular matrix:

$$
A=\left(\begin{array}{lll}
a & b & c \\
0 & d & e \\
0 & 0 & f
\end{array}\right)
$$

(a) Prove that if $a d f=0$, then A is not invertible.
(b) Prove that if $a d f \neq 0$, then A is invertible, and compute its inverse.

