Math 136: Homework 4

Due Thursday, April 26
(1) Let $P_{1}=\left(x_{1}, y_{1}\right), P_{2}=\left(x_{2}, y_{2}\right)$, and $P_{3}=\left(x_{3}, y_{3}\right)$ be three noncollinear points in \mathbb{R}^{2}. Show that the equation of the circle passing through these points is given by the equation

$$
\left|\begin{array}{cccc}
1 & x & y & x^{2}+y^{2} \\
1 & x_{1} & y_{1} & x_{1}^{2}+y_{1}^{2} \\
1 & x_{2} & y_{2} & x_{2}^{2}+y_{2}^{2} \\
1 & x_{3} & y_{3} & x_{3}^{2}+y_{3}^{2}
\end{array}\right|=0 .
$$

(2) Let A be a real $n \times n$ matrix and consider the linear map $T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by multiplication by A. Suppose that $\lambda=\alpha+i \beta \in \mathbb{C}, \beta \neq 0$, is a complex eigenvalue of A, with complex eigenvector $\mathbf{z}=\mathbf{x}_{1}+i \mathbf{x}_{2}$, where \mathbf{x}_{1} and \mathbf{x}_{2} are column vectors in \mathbb{R}^{n} (not both zero). Thus,

$$
A \mathbf{z}=\left(A \mathbf{x}_{1}\right)+i\left(A \mathbf{x}_{2}\right)=\left(\alpha \mathbf{x}_{1}-\beta \mathbf{x}_{2}\right)+i\left(\alpha \mathbf{x}_{2}+\beta \mathbf{x}_{1}\right) .
$$

(a) Prove that the vectors \mathbf{x}_{1} and \mathbf{x}_{2} are linearly independent and, therefore, span a 2-dimensional subspace $W=\operatorname{span}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \subset \mathbb{R}^{n}$.
(b) Show that T_{A} restricts to define a linear map $T_{W}: W \rightarrow W$ and that the matrix of T_{W} with respect to the basis $\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$ of W is

$$
|\lambda|\left(\begin{array}{cc}
\cos (\theta) & \sin (\theta) \\
-\sin (\theta) & \cos (\theta)
\end{array}\right)
$$

where $\lambda=|\lambda| e^{i \theta}$ (the polar form of λ).
(c) What is the geometrical interpretation of the result of part (b)?
(3) Three objects of mass m connected by springs are free to move up and down as shown in the figure below.

Let y_{k}, for $k=1,2,3$, denote the height of the k th object above the x-axis. Let F_{k} denote the vertical component of the net force on the k th object. One can show that if all the heights y_{k} are small, then
$F_{1}=-2 K y_{1}+K y_{2}, \quad F_{2}=K y_{1}-2 K y_{2}+K y_{3}, \quad F_{3}=K y_{2}-2 K y_{3}$.
Let $\omega=\sqrt{K / m}$.
(a) Show that Newton's equations of motion can be written in the matrix form

$$
\frac{d^{2} \mathbf{y}}{d t^{2}}+A \mathbf{y}=\mathbf{0}
$$

where

$$
\mathbf{y}=\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right) \text { and } A=\omega^{2}\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right)
$$

(b) Find the general solution by finding eigenvalues and eigenvectors for the appropriate matrix.
(c) Interpret the eigenvectors you find.
(d) Suppose that at time $t=0, y_{1}=1, y_{2}=0, y_{3}=-1$, and the velocity of every mass is zero. Find $\mathbf{y}(t)$ for all t.

