1. Consider the linear map $T_{A}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $\mathbf{v} \mapsto A \mathbf{v}$, where $A=\left(\begin{array}{ccc}1 & -2 & 0 \\ 1 & 4 & 0 \\ -2 & -2 & 1\end{array}\right)$. Find the matrix associated to T_{A} with respect to the basis

$$
\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}=\left\{\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right),\left(\begin{array}{c}
2 \\
-1 \\
-2
\end{array}\right),\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)\right\} .
$$

2. Consider the function

$$
f(x, y)=3 x^{2}+2 x y+3 y^{2}=\left(\begin{array}{ll}
x & y
\end{array}\right)\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right)\binom{x}{y} .
$$

Consider the new variables (X, Y) where

$$
\binom{X}{Y}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{x}{y} .
$$

For an appropriate choice of θ, the function f will assume the form $f(x, y)=a X^{2}+b Y^{2}$. Find a, b, and θ by diagonalizing the matrix $\left(\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right)$.
3. Let $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 3\end{array}\right)$ and show that $e^{A}=\left(\begin{array}{ccc}e & e^{2}-e & e^{3}-e^{2} \\ 0 & e^{2} & e^{3}-e^{2} \\ 0 & 0 & e^{3}\end{array}\right)$.
4. Let I denote the $n \times n$ identity matrix, and suppose that B is an $n \times n$ matrix satisfying $B^{2}=0$ (for example, $B=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$). Let c be a scalar and show that $e^{c I+B}=e^{c} I+e^{c} B$. (Recall from class that if X and Y are matrices which commute, then $e^{X+Y}=e^{X} e^{Y}$.)

