Math 136: Homework 5 Due Thursday, May 3

1. Consider the linear map $T_A : \mathbb{R}^3 \to \mathbb{R}^3$ defined by $\mathbf{v} \mapsto A\mathbf{v}$, where $A = \begin{pmatrix} 1 & -2 & 0 \\ 1 & 4 & 0 \\ -2 & -2 & 1 \end{pmatrix}$. Find the matrix associated to T_A with respect to the basis

$$\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} = \left\{ \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} 2\\-1\\-2 \end{pmatrix}, \begin{pmatrix} -1\\1\\0 \end{pmatrix} \right\}.$$

2. Consider the function

$$f(x,y) = 3x^{2} + 2xy + 3y^{2} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Consider the new variables (X, Y) where

$$\begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

For an appropriate choice of θ , the function f will assume the form $f(x,y) = aX^2 + bY^2$. Find a, b, and θ by diagonalizing the matrix $\begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$.

3. Let
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{pmatrix}$$
 and show that $e^A = \begin{pmatrix} e & e^2 - e & e^3 - e^2 \\ 0 & e^2 & e^3 - e^2 \\ 0 & 0 & e^3 \end{pmatrix}$.

4. Let *I* denote the $n \times n$ identity matrix, and suppose that *B* is an $n \times n$ matrix satisfying $B^2 = 0$ (for example, $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$). Let *c* be a scalar and show that $e^{cI+B} = e^cI + e^cB$. (Recall from class that if *X* and *Y* are matrices which commute, then $e^{X+Y} = e^X e^Y$.)