Algebraic topology in Sage

John H. Palmieri
Department of Mathematics
University of Washington

Cascade Topology Seminar
 December 1, 2012
 Eugene

Sage

Sage's mission: Creating a viable free open source alternative to Magma ${ }^{\text {TM }}$, Maple ${ }^{\text {TM }}$, Mathematica ${ }^{\text {TM }}$, and Matlab ${ }^{\text {TM }}$. In detail:

- free
- free
- open-source
- open-source

Sage project started by William Stein in 2005.
Sage in action...

Triangulating R^{n}

- Start with $\partial \Delta^{n+1}$ (the n-sphere).
- Barycentrically subdivide once to get a complex K
- Each vertex of K corresponds to a nonempty proper subset of $\{0,1,2, \ldots, n+1\}$.
- Taking complements gives the simplicial antipodal map on K; the quotient space by the resulting $\mathbf{Z} / 2$-action is a triangulation of $\mathbf{R} P^{n}$.

Triangulating R^{n}

This is usually not a minimal triangulation of $\mathbf{R} P^{n}$. Minimal number of vertices required to triangulate $\mathbf{R} P^{n}$:

- $n=2: 6$ vertices
- $n=3$: 11 vertices
- $n=4: 16$ vertices
- $n=5$: 22 vertices? (unpublished example with 24 vertices)
- $n \geq 3$: need at least $1+(n+1)(n+2) / 2$ vertices. Bound not known to be optimal for $n \geq 5$.
- The above construction uses $2^{n+1}-1$ vertices.

Triangulating C P^{n}

$\mathrm{C} P^{n}$

- $\mathbf{C} P^{2}$ was first triangulated (minimally -9 vertices) by Kühnel and Banchoff in 1983.
- $\mathbf{C} P^{3}$ was first triangulated in 2010 (!). Triangulation uses 18 vertices.
- Need at least $1+(n+1)^{2} / 2$ vertices for $\mathbf{C} P^{n}$. Bound not known to be optimal for $n \geq 3$.

Problem

No known triangulation of C^{n} for $n \geq 4$.

Torsion in homology of simplicial complexes

Problem

Given an integer $n>0$, what kinds of torsion can arise in the homology of a simplicial complex on n vertices?

Start by looking at random simplicial complexes (Meshulam and Wallach):

- Fix $n=$ number of vertices, $d=$ dimension, and $p=$ probability.
- Include all simplices of dimension $<d$.
- Include each d-simplex independently with probability p.

Torsion in random simplicial complexes

\# vert. dim. max torsion (for best probability p)
8210000 trials: 3 complexes with 2-torsion
$10 \quad 2 \quad 10000$ trials: 15 complexes with 2-torsion

10310000 trials: 41 with 2-torsion, 2 with 3-torsion, 1 with 4-torsion
10410000 trials: 64 with 2-torsion, 2 with 3-torsion 13210000 trials: 27 with 2 -torsion, 1 with 3-torsion
13
4 2000 trials: 62 with 2 -torsion, 8 with 3 -torsion, 6 with 4 -torsion, 2 each with 10 -, 14 -torsion, 1 each with 8-, 11-, 12-, 18-, 22-, 30-torsion
20210000 trials: 93 with 2-torsion, 5 with 3-torsion 3 with 4 -torsion, 1 with 5 -torsion, 1 with 7 -torsion
30210000 trials: 113 with 2-torsion, 17 with 3-torsion, 8 with 4 -torsion, 2 with 5 -torsion, 4 with 6 -torsion, 1 each with $7-$ - 9 -, 36-torsion

Sum complexes - Linial, Meshulam, Rosenthal

- Fix $n>0$. Vertex set $=\mathbf{Z} / n$.
- Fix dimension $d>0$ and subset A of \mathbf{Z} / n with cardinality $d+1$.
- The facets are

$$
\left\{\left(x_{0}, x_{1}, \ldots, x_{d}\right): \sum x_{i} \in A\right\}
$$

- Let's compute some homology groups...

Torsion: problems

For any finitely generated abelian group G, let max-cyclic(G) be the order of the largest cyclic summand of G. For any integer n, define $T(n)$ by

$$
T(n)=\max \left\{\max -\operatorname{cyclic}\left(H_{*} X\right): X \text { has } n \text { vertices }\right\}
$$

It seems that $T(n)$ grows more quickly than exponential in n.

Problem

- Understand the asymptotic behavior of $T(n)$.
- Compute $T(n)$ for each n.
- The same but fixing a dimension d as well as n :

$$
T(n, d)=\max \left\{\max -c y c l i c\left(H_{d-1} X\right): X \text { has } n \text { vertices }\right\} .
$$

SageTEX

Advertisement: Sage $T_{E} X$. In a La $T_{E X}$ file (like this one), \sageplot\{plot($\sin \left(1 / x^{\wedge} 2\right)$, ($\left.x, 0.1,0.5\right)$)\} yields

SageTEX

```
\begin\{sagesilent\} }
\(\mathrm{t}=\) Tachyon(camera_center=(8.5,5,5.5), look_at=(2,0,0), raydepth=6,
    xres=1500, yres=1500)
t.light((10,3,4), 1, (1,1,1))
t.texture('mirror', ambient=0.05, diffuse=0.05, specular=.9,
opacity=0.9, color=(.8,.8,.8))
t.texture('grey', color=(.8,.8,.8), texfunc=0) \#\# try other values of texfunc!
t.plane ( \((0,0,0),(0,0,1)\), 'grey')
t.sphere( \((4,-1,1), 1\), 'mirror')
t.sphere(( \(0,-1,1), 1\), 'mirror')
t.sphere(( \(2,-1,1\) ), 0.5, 'mirror')
t.sphere((2,1,1), 0.5, 'mirror')
\end\{sagesilent\} }
\sageplot\{t\}
yields
```


SageTEX

Conclusion

Main Sage web site: http://www.sagemath.org
Also look into http://aleph.sagemath.org and the Sage app for smartphones.

I will end with http://www.nilesjohnson.net/hopf.html. Every frame of this movie was made using Sage, and then the frames were animated with FFmpeg.

