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SOME QUOTIENT HOPF ALGEBRAS OF THE DUAL

STEENROD ALGEBRA

J. H. PALMIERI

Abstract. Fix a prime p, and let A be the polynomial part of the dual Steen-

rod algebra. The Frobenius map on A induces the Steenrod operation P̃0 on

cohomology, and in this paper, we investigate this operation. We point out

that if p = 2, then for any element in the cohomology of A, if one applies P̃0

enough times, the resulting element is nilpotent. We conjecture that the same
is true at odd primes, and that “enough times” should be “once.”

The bulk of the paper is a study of some quotients of A in which the

Frobenius is an isomorphism of order n. We show that these quotients are
dual to group algebras, the resulting groups are torsion-free, and hence every
element in Ext over these quotients is nilpotent. We also try to relate these

results to the questions about P̃0. The dual complete Steenrod algebra makes

an appearance.

1. Introduction

Fix a prime number p, and let A be the following familiar Hopf algebra: as an
algebra,

A = Fp[ξ1, ξ2, ξ3, . . . ],

and the coproduct is determined by

(1.1) ∆(ξn) =

n∑

i=0

ξpi

n−i ⊗ ξi,

where ξ0 = 1. There is also an antipode – see Lemma 3.6 – but it does not play a
central role here. A is graded by putting ξn in degree 2n − 1 when p = 2, and in
degree 2pn− 2 when p is odd. This makes A into a graded connected commutative
Hopf algebra.

When p = 2, the graded dual of A is the mod 2 Steenrod algebra; when p is
odd, the graded dual of A is the algebra of reduced power operations, which is a
quotient of the mod p Steenrod algebra. We will occasionally abuse the language
and refer to A as the dual Steenrod algebra, regardless of the prime. We write A∗

for its graded dual.
Homotopy theorists would like to understand the cohomology of A, which can

be defined as Ext∗,∗
A∗ (Fp,Fp), where Ext is computed in the category of graded A∗-

modules, or equivalently as Ext∗,∗
A (Fp,Fp), where Ext is computed in the category

of graded A-comodules. (In places where it makes a difference, we will use the
comodule definition). Note that in this setting, Ext is bigraded: the first grading
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is the usual homological one, and the second is induced by the grading on the
(co)module category. The Frobenius map a 7→ ap on A is a Hopf algebra map, and

so it induces an algebra map on cohomology. We denote this map by P̃0 when p is

unspecified or odd, and by S̃q
0

when p = 2 (see Proposition 5.1 for an explanation
of this notation). Since the Frobenius does not preserve the grading, neither does

P̃0 – it works like this:

P̃
0 : Exts,t

A (Fp,Fp)→ Exts,pt
A (Fp,Fp).

We would like to understand how the map P̃0 interacts with the multiplicative
structure of Ext∗A(Fp,Fp). This paper has two goals: to advertise some questions
and conjectures related to this interaction, and to study some Hopf algebras related

to A that arise when studying P̃0 and the Frobenius.
We start by pointing out that

P̃
0 : Ext0,0

A (Fp,Fp)→ Ext0,0
A (Fp,Fp)

is the identity map. Regarding Ext in positive dimensions, one can deduce the
following from the main result in [Pal99].

Theorem 1.2. Let p = 2 and fix z ∈ Exts,t
A (F2,F2). If s is positive, then there is

an n so that (S̃q
0
)n(z) is nilpotent.

This fails if A is replaced by the sub-Hopf algebra F2[ξ1] – the cohomology of

this is F2[h10, h11, h12, . . . ], with S̃q
0
(h1,n) = h1,n+1 – but holds if A is replaced by

any quotient Hopf algebra. See the appendix for the theorem’s proof. One might
ask whether there is a simpler proof of this, one which would hold at any prime.

Question 1.3. (a) Is the analogous result true when p is odd?
(b) Can one prove Theorem 1.2 without appealing to the F -isomorphism of

[Pal99, Theorem 1.2]?

It is also natural to ask, given z as in Theorem 1.2, how large must n be to make

(S̃q
0
)n(z) nilpotent? S̃q

0
is an algebra map, so if z is nilpotent, then so is S̃q

0
(z).

For every known non-nilpotent element z (except for z = 1), S̃q
0
(z) is nilpotent as

well. This leads us to make the following conjecture. All of our evidence is valid
only for the prime 2, but we brashly state it for all primes.

Conjecture 1.4. Fix a prime p and an element z ∈ Exts,t
A (Fp,Fp) with s > 0.

Then P̃0(z) is nilpotent.

This is rather specific to A: Theorem 1.2 fails for Fp[ξ1], and the conjecture
implies the theorem. Thus the conjecture does not hold for sub-Hopf algebras of
A. It also fails for quotient Hopf algebras of A: for example, the cohomology of

F2[ξ2]/(ξ
4
2) is isomorphic to F2[h20, h21], with S̃q

0
(h20) = h21. (Note, though, that

a modified conjecture may hold for quotients of A: given a quotient Hopf algebra

B of A, there exists an n so that for all z ∈ Exts,t
A (Fp,Fp) with s > 0, (P̃0)n(z) is

nilpotent.)
One can interpret many of these questions in terms of the “double” ΦA of A: let

ΦA be the sub-Hopf algebra of A generated by the pth powers of the generators:

ΦA = Fp[ξ
p
1 , ξp

2 , ξp
3 , . . . ].
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Then A and ΦA are isomorphic via the Frobenius map x 7→ xp, and so their Ext
algebras are isomorphic. We write φ for the isomorphism:

φ : Exts,t
A (Fp,Fp)

∼=
−→ Exts,pt

ΦA (Fp,Fp).

Since ΦA is a sub-Hopf algebra of A, there is also an induced map which preserves
the grading:

ρ : Exts,t
ΦA(Fp,Fp)→ Exts,t

A (Fp,Fp).

It is not hard to see that for any z ∈ Exts,t
A (Fp,Fp),

ρ(φ(z)) = P̃
0(z).

So, for example, Conjecture 1.4 is equivalent to the statement that every positive-
dimensional element in the image of ρ is nilpotent.

One can also reformulate these questions, conjectures, and results as follows.

Let Â be the dual complete Steenrod algebra: Â is the Z[ 1
p
]-graded Hopf algebra

obtained from A by adjoining all pkth roots of each indeterminate ξn:

Â = lim
−→

(
Fp[ξn : n ≥ 1]→ Fp[ξ

p−1

n : n ≥ 1]→ Fp[ξ
p−2

n : n ≥ 1]→ · · ·
)

.

(In the language of [Arn94], [Arn00], and [LH96], Â is the “root algebra” associated

to A.) The coproduct on A induces one on Â:

∆(ξpk

n ) =

n∑

i=0

ξpi+k

n−i ⊗ ξpk

i ,

for all n ≥ 1 and all k ∈ Z, where ξ0 = 1 as usual. The antipode for A also induces

one for Â, which we will not need. The dual Â∗ of Â is the complete Steenrod

algebra, which was introduced by Arnon [Arn94, Arn00] and has also been studied

by Llerena and Hu’ng [LH96]. (Note that Â∗ is not a graded algebra, since it is

larger than the direct sum of its graded pieces – see [LH96, Remark 1.5]. Â is a

graded algebra, though; the difference is that Â is defined as a direct limit, while

Â∗ is an inverse limit.)

In other words, one obtains Â from A by inverting the Frobenius map. As a

result, one can show – see Proposition 5.3 – that the cohomology of Â is isomorphic

to the cohomology of A with the operation P̃0 inverted.
Thus Theorem 1.2 says that every positive dimensional element in Ext∗

Â
(F2,F2)

is nilpotent, and Question 1.3(a) asks whether this is true at odd primes. Â seems
as though it should be easier to understand than A. Hence we have the following
natural question.

Question 1.5. What is the cohomology of Â?

In order to approach all of these questions, we try something simpler: rather

than constructing Â by formally inverting the Frobenius and P̃0, thus making
them isomorphisms with infinite order, we will construct Hopf algebras in which
they are invertible with finite order.

Thus we study the following quotient Hopf algebras of A: fix n ≥ 1 and define
Hn by

Hn = A/(ξpn

i − ξi : i ≥ 1).

This is a version of A in which the Frobenius has order n. In this paper, we show
that the topological linear dual of Hn is a group algebra and we identify the group.
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We use this observation to show that Ext∗,∗
Hn(Fp,Fp) consists entirely of nilpotent

elements. We also try to relate these Ext calculations to the cohomology of the
complete Steenrod algebra.

A few words of warning may be warranted for any topologists who may be
reading this. First, Hn does not inherit the grading from A, since the ideal is not
homogeneous. Many topologists are used to dualizing quotient Hopf algebras of
A to get sub-Hopf algebras of the Steenrod algebra, but since Hn is not graded,
its dual sits inside the ungraded dual of A, which is distinctly different from the
usual Steenrod algebra. After all, since A is finite-dimensional in each grading, it
is isomorphic to its double graded dual; since it is infinite-dimensional as a whole,
it is not isomorphic to its double ungraded dual.

For example, let p = 2 and n = 1. If one dualizes with respect to the monomial
basis of A, then ξi

1 is dual to an element called Sqi. Hence when one dualizes H1,
since ξ1 is identified with ξi

1 for all i, the element dual to ξ1 in (H1)∗ deserves to be
called

∑
j≥1 Sqj . This element is non-nilpotent – compare this to the graded dual

of A, in which such infinite sums do not occur and in which every element in the
augmentation ideal is nilpotent. The non-nilpotence of x =

∑
j≥1 Sqj is reflected

by the coproduct in H1: ∆(ξ2) contains a term ξ2
1 ⊗ ξ1 = ξ1⊗ ξ1, and hence x2 6= 0

– it is detected by ξ2. ∆(ξ4) has a term ξ2 ⊗ ξ2, so the iterated coproduct of ξ4

has a term ξ1 ⊗ ξ1 ⊗ ξ1 ⊗ ξ1, and hence x4 6= 0. For each n, ∆(ξ2n) has a term
ξ2n−1 ⊗ ξ2n−1 , and hence inductively x2n

6= 0 for all n.
In other words, the Hopf algebras Hn and their duals may challenge the intuition

of any readers (or authors) who are used to working with the Steenrod algebra.
Here is an outline of the paper: in Section 2, we show that Hn is dual to a

group algebra, and we identify the group – it is the group of strict automorphisms
of the additive formal group law over Fpn . We accomplish this by imitating work
of Ravenel and others on the Morava stabilizer groups. We also note that this
automorphism group is a torsion-free pro-p group. In Section 3, we collect some
observations about Hn and the associated automorphism group; for example, we
point out that the group is not p-adic analytic. In Section 4, we use the fact that
the group is torsion-free to show that its cohomology consists entirely of nilpotent
elements. In Section 5, we fill in some of the details of the ideas in this introduction:

the relationship between the Frobenius on A and the Steenrod operation P̃0, and
also the completed Steenrod algebra and its cohomology. There is also an appendix
which contains the proof of Theorem 1.2.

Convention. Throughout, an unadorned tensor product ⊗ means tensor product
over Fp.

Acknowledgments. Much of the work on the Hopf algebras Hn was inspired by
a brief conversation with Mike Hopkins. I have had many helpful discussions with
Ethan Devinatz and Hal Sadofsky. Also, several of the results and proofs owe an
obvious debt to Section 6.2 of Ravenel’s green book [Rav86].

2. Hn is dual to a group algebra

Let Hn be as above. Let Bn
j be the sub-Hopf algebra of Hn generated by ξi

with 1 ≤ i ≤ j. Let Hn
j be the quotient of Hn by Bn

j . Let F = Fpn . That is, for
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fixed n ≥ 1 and j ≥ 0,

Hn = Fp[ξ1, ξ2, . . . ]/(ξ
pn

i − ξi : i ≥ 1),

Hn
j = Fp[ξj+1, ξj+2, . . . ]/(ξ

pn

i − ξi : i ≥ j + 1),

Bn
j = Fp[ξ1, ξ2, . . . , ξj ]/(ξ

pn

i − ξi : j ≥ i ≥ 1),

F = Fpn .

Note that Hn
0 = Hn.

In this section, we show that after tensoring with F, each of these Hopf algebras
is dual to a group algebra, we identify the groups, and we observe that the group
associated to Hn

j is torsion-free for each n and j.
First we should verify that Hn

j is a quotient Hopf algebra of A for each n and
j. Given this, it is clear from the formula for the coproduct (1.1) that Bn

j is a
sub-Hopf algebra of Hn.

Lemma 2.1. Fix n ≥ 1 and j ≥ 0. Then

In
j = (ξ1, . . . , ξj ; ξpn

i − ξi : i ≥ j + 1)

is a Hopf ideal of A. Thus Hn
j is a quotient Hopf algebra of A.

Proof. We have defined I = In
j as an ideal in the algebra A, so we need to show

that it interacts well with the coproduct. That is, for each x ∈ I, we need to show
that ∆(x) ∈ I⊗A+A⊗I. It suffices to check this for the generators of the ideal; it
is clear when x = ξm with m ≤ j, so let x = ξpn

m − ξm, where m > j. We compute:

∆(ξpn

m − ξm) =
m∑

i=0

(
ξpn+i

m−i ⊗ ξpn

i − ξpi

m−i ⊗ ξi

)

= (ξpn

m − ξm)⊗ 1 + 1⊗ (ξpn

m − ξm)

+
m−1∑

i=1

(
(ξpn+i

m−i − ξpi

m−i)⊗ ξi + ξpn+i

m−i ⊗ (ξpn

i − ξi)
)

.

Thus ∆(ξpn

m − ξm) is in I ⊗A + A⊗ I, as desired. �

As in [Rav86, Section 6.2], we can discuss the “topological linear dual” of the
Hopf algebras Hn

j : since Hn, for instance, is the direct limit of the finite-dimensional
sub-Hopf algebras Bn

j , then the topological linear dual (Hn)∗ is defined to be
(Hn)∗ = lim

←−j
(Bn

j )∗, with the topology induced by the inverse limit.

The first part of the proof of [Rav86, Theorem 6.2.3] applies in our setting to
give the following.

Proposition 2.2. Fix n ≥ 1, j ≥ 0, and ` ∈ {1, 2, . . . } ∪ {∞}, and let H be the

following sub-Hopf algebra of Hn
j ⊗ F:

H = F[ξj+1, . . . ξj+`]/(ξ
pn

i − ξi : j + ` ≥ i ≥ j + 1).

Then the topological linear dual H∗ of H is a group algebra. �

For example, this applies when H = Bn
j ⊗F or H = Hn

j ⊗F. By “the topological
linear dual” of a finite-dimensional Hopf algebra like Bn

j , we mean its ordinary
vector space dual with the discrete topology.
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We would like to identify the groups involved. Let Gn, Gn
j , and Pn

j be the groups
so that

F[Gn] ∼= (Hn ⊗ F)∗,

F[Gn
j ] ∼= (Hn

j ⊗ F)∗,

F[Pn
j ] ∼= (Bn

j ⊗ F)∗.

Of course, Gn
0 = Gn since Hn

0 = Hn. Also, note that P n
j is a finite p-group and Gn

j

is a pro-p group: Hn
j is the direct limit of the finite-dimensional sub-Hopf algebras

Fp[ξj+1, . . . , ξj+`]/(ξ
pn

i − ξi),

and this direct system becomes an inverse system of group algebras, induced by an
inverse system of groups, after tensoring up with F and dualizing.

Proposition 2.3. Fix n ≥ 1 and j ≥ 0.

(a) Gn is the group of strict automorphisms of the additive formal group law

over F. That is, Gn is the group of power series of the form x+
∑

i≥1 aix
pi

with ai ∈ F, under composition.

(b) Gn
j is the subgroup of Gn consisting of such power series with ai = 0 for

1 ≤ i ≤ j.
(c) Pn

j is the quotient group Gn/Gn
j . That is, P n

j is the group of power series

of the form in (a), with xpj+1

= 0.

Proof. This follows from the well-known observation that A corepresents the strict
automorphisms of the additive formal group law for Fp-algebras – see [Rav86,
p. 378], for example. That is, A is the mod p group scheme for this strict au-
tomorphism group.

In more detail: we prove (c) first. Bn
j is dual to the group algebra of a finite

group, and the group is precisely the group of points in the group scheme defined
by Bn

j ⊗ Fp, where Fp is the algebraic closure of Fp:

Pn
j = Hom

Fp-alg(B
n
j ⊗ Fp,Fp).

By imitating the analysis for A, one can see that this is the group of power series
of the form

x + a1x
p + a2x

p2

+ · · ·+ ajx
pj

under composition, subject to xpj+1

= 0, where ai ∈ Fp and apn

i = ai. In particular,

ai ∈ Fp is the image of ξi. The elements a of Fp satisfying apn

= a form a subfield
isomorphic to F, and this completes the proof of part (c).

To prove (a), take limits: since Hn is the direct limit of the finite-dimensional
sub-Hopf algebras Bn

j , Hn represents the group scheme

Hom
Fp-alg(lim−→

j

Bn
j ⊗ Fp,−) = lim

←−
j

Hom
Fp-alg(B

n
j ⊗ Fp,−).

Gn is the group of Fp-points in this group scheme, which is as described in (a).
The proof of part (b) is similar. �

We end this section with the following result.

Proposition 2.4. Fix n ≥ 1 and j ≥ 0. Then Gn
j is torsion-free.



QUOTIENTS OF THE DUAL STEENROD ALGEBRA 7

Proof. Fix α ∈ Gn
j different from the identity element, so α = x +

∑
i>j aix

pi

with
at least one ai nonzero. Indeed, suppose that am is the first nonzero coefficient.
Then we claim that in αp, the coefficient of xppm

is the first nonzero term. This

implies that the elements {αpi

|i ≥ 0} are distinct, and so α is not a torsion element.

To verify the claim, we need to know the coefficient of xpi

in αp. Since the
product in Gn

j is determined by the coproduct in Hn
j , to find any coefficient in αp,

we use the pth iterated coproduct in Hn
j , which is defined in Notation 2.5 and a

formula for which is given in Lemma 2.6. The pth iterated coproduct on ξpm has a
term

ξp(p−1)m

m ⊗ · · · ⊗ ξp2m

m ⊗ ξpm

m ⊗ ξm︸ ︷︷ ︸
p factors

,

which produces the nonzero term

ap(p−1)m+p(p−2)m+···+p2m+pm+1
m

in the coefficient of xppm

. Since am is the first nonzero coefficient in α, then only
terms in the iterated coproduct having no ξi factors with 0 < i < m are relevant.
So all of the other relevant terms in the pth iterated coproduct of ξpm, and all of
the relevant terms in the pth iterated coproduct of ξk for k < pm, will have at least
one tensor factor equal to 1, and hence will occur with some multiplicity. It is easy
to check that the multiplicity is divisible by p – see Lemma 2.7 – and hence is zero
in F. �

Notation 2.5. Given a coassociative coalgebra C with coproduct ∆, we let ∆2 =
∆, and ∆m = (∆ ⊗ 1⊗m−2) ◦ ∆m−1 for m ≥ 3; we call ∆m the “mth iterated
coproduct”. This is indexed so that ∆m(x) lies in C⊗m.

The following is immediate from the formula for the coproduct in Hn
j .

Lemma 2.6. For any m ≥ 1, the mth iterated coproduct in Hn
j of ξ` is

∆m(ξ`) =
∑

i1+···+im=`
ik=0 or ik>j

ξpi1+···+im−1

im
⊗ · · · ⊗ ξpi1+i2

i3
⊗ ξpi1

i2
⊗ ξi1 .

Lemma 2.7. Given an ordered list (b1, . . . , bm) and a number p ≥ m, then the

number of ways of adding p−m 1’s to the list, while preserving the ordering of the

bi’s, is
(

p
m

)
. �

The proof is a simple combinatorial argument.
Thus given a pth iterated coproduct with at p − m 1’s in it, it occurs with

multiplicity
(

p
m

)
. If p is prime and 0 < m < p, this multiplicity is congruent to zero

mod p.

3. Examples and observations

In this section, we collect some miscellaneous observations about the Hopf alge-
bras Hn

j and the corresponding groups Gn
j .

Example 3.1 (H1). Let n = 1. In this case, the Hopf algebra H1 is bicommuta-
tive. Avinoam Mann pointed out (private communication) that the corresponding
abelian group G1 is isomorphic to the group of power series of the form 1 +

∑
aix

i

with multiplication as the group operation. According to [Cam00, p. 218], this
group is a free abelian pro-p group of infinite rank. In particular, it is not p-adic
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analytic, since such groups must have finite rank. Since G1 is a subgroup of Gn for
every n, no Gn is p-adic analytic.

One might also note that for any n, the group Gn is a subgroup of the Nottingham

group N = N (F), which consists of all power series x +
∑

j≥2 bjx
j with bj ∈ F,

under composition. Such an observation is almost a triviality, since every finite
p-group, and every countably-based pro p-group, can be embedded as a subgroup
of N ; the group Gn is embedded in a particularly nice way, though – it is an “index
subgroup”. See [Cam00, Theorems 10 and 11, and pp. 217-8] for more on the
Nottingham group.

Example 3.2 (P 1
j and G1). The group P n

j corresponding to the Hopf algebra Bn
j

is a finite p-group of order pnj . Pn
1 is abelian for all n; indeed, P n

1 is isomorphic to
the additive group of F = Fpn : Pn

1
∼= (Cp)

n. (We write Cd for the cyclic group of
order d.) For each j, P 1

j is abelian of order pj , and one can show that

P 1
j
∼=

∏

i≤j, p-i

Cαp( j+1
i

),

where αp(r) is the smallest power of p greater than or equal to r:

αp(r) = min
i
{pi : pi ≥ r} = pdlogp(r)e.

In this decomposition, the cyclic summand of order αp(
j+1

i
) is generated by the

power series 1 + xi. Thus in the inverse system

· · · → P 1
j+2 → P 1

j+1 → P 1
j → · · ·

defining G1, the cyclic summands at the jth stage are the images from the later
stages of cyclic summands of larger and larger orders. Of course this must happen,
since G1 is torsion-free; in this particular case, though, we can observe it directly.

Example 3.3 (A filtration). Note that Bn
j is a sub-Hopf algebra of Bn

j+1, and

the (conormal) quotient is Fp[ξj ]/(ξ
pn

j − ξj) with ξj primitive. This quotient is
isomorphic to Bn

1 . Dually, for each j ≥ 1 there is a group extension

1→ (Cp)
n → Pn

j+1 → Pn
j → 1.

Gn is the inverse limit of the groups P n
j with respect to these surjections. So the

associated graded consists of a copy of P n
1 = (Cp)

n = F in each degree.
Equivalently, since Gn

j is the kernel of the map Gn → Pn
j , Gn

j is normal in Gn.
Indeed, each Gn

j is normal in Gn
k whenever j ≥ k. This gives a filtration of Gn:

Gn = Gn
0 ⊇ Gn

1 ⊇ Gn
2 ⊇ · · · .

Again, the associated graded is isomorphic to F in each degree.

We also point out that whenever n divides m, Fpn is a subfield of Fpm , so Gn is
a subgroup of Gm. For the same reason, the colimit of the groups Gn is the group
of strict automorphisms of the additive formal group over Fp, which we denote by
G∞. One can define G∞

j analogously to Gn
j : G∞

j consists of power series in G∞

with the first j coefficients equal to zero. Summarizing, we have the following.

Proposition 3.4. (a) Fix j ≥ 0 and k, n ≥ 1. Then Gn
j is a subgroup of Gkn

j .

Dually, Hn
j is a quotient of Hkn

j : the map sending ξi ∈ Hkn
j to ξi ∈ Hn

j is

a surjective Hopf algebra map.
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(b) Fix j ≥ 0. Then with respect to the inclusions in part (a),

lim
−→
n

Gn
j
∼= G∞

j .
�

As far as dualizing part (b), see Proposition 5.4 for a partial result.
Note that it is not necessary to tensor up to Fpkn coefficients to get the quotient

map Hkn
j � Hn

j . We also point out that these subgroups are not normal:

Proposition 3.5. Fix n ≥ 1. Gn is not normal in Gkn if k ≥ 2. Thus Hn is

not a conormal quotient of Hkn if k ≥ 2; that is, Hkn
�HnFp and Fp �HnHkn are

different as sub-vector spaces of Hkn.

In order to prove this, we need to know how to invert elements of Gkn. We
recall the formula for the antipode in A from [Mil58]. Let Part(n) denote the set
of ordered partitions of n (so, for example, (3, 1) and (1, 3) are distinct elements of
Part(4)). Given an ordered partition α ∈ Part(n), write `(α) for the length of α;
for i ≤ `(α), let α(i) be the ith term of α, and let σ(i) be the sum of the first i− 1
terms of α.

Lemma 3.6 (Lemma 10 in [Mil58]). The conjugate of ξn in A is equal to

χ(ξn) =
∑

α∈Part(n)

(−1)`(α)

`(α)∏

i=1

ξpσ(i)

α(i) .

The same formula applies in Hn
j and Bn

j for all n and j.

In particular, the summand corresponding to the partition (1, 1, . . . , 1) is

(−1)nξ1+p+p2+···+pn−1

1 .

Proof of Proposition 3.5. Fix n ≥ 1 and k ≥ 2. To see that Gn is not normal in
Gkn, conjugate α = x + xp ∈ G1 ≤ Gn by β = x + b1x

p for some b1 ∈ Fpkn \ Fpn .
Using Lemma 3.6 and the observation following it, one can see that

β−1 = x +
∞∑

i=1

(−1)ib1+p+···+pi−1

1 xpi

.

So

αβ−1 = β−1 + (β−1)p

= x + (−b1 + 1)xp +
∞∑

i=2

(−1)i(b1+p+···+pi−1

1 − bp+p2+···+pi−1

1 )xpi

.

So one can compute βαβ−1:

βαβ−1 = (αβ−1) + b1(αβ−1)p

= x + xp + (−bp
1 + b1)

(
xp2

− b1x
p3

+ b1+p
1 xp4

− b2+p
1 xp5

+ · · ·
)

.

We are assuming that b1 6∈ Fpn , so bp
1 6= b1. If the coefficient −bp

1 + b1 of xp2

is in

Fpn , then the coefficient (−bp
1 +b1)b1 of xp3

is not. So βαβ−1 is not in Gn, although
α is. �
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4. The cohomological variety of Hn is trivial

Let Hn be as above. In this section, we examine the cohomology of Hn. By
“cohomology,” we mean Ext∗Hn(Fp,Fp), where Ext is computed in the category of
Hn-comodules. The main result is that every positive dimensional cohomology
class is nilpotent.

Since after tensoring up with Fpn , the topological linear dual of Hn is the group
algebra of the profinite group Gn, we have the following result, which is analogous
to [Rav86, Corollary 6.2.4]. First note that any Hn-comodule M may be viewed as
an (Hn)∗-module via the composite

(Hn)∗ ⊗M → (Hn)∗ ⊗Hn ⊗M →M.

This makes M ⊗ Fpn into a discrete Gn-module.

Proposition 4.1. There is an isomorphism

Ext∗Hn(Fp,Fp)⊗ Fpn ∼= H∗
c (Gn,Fpn),

where H∗
c denotes continuous group cohomology.

(There should be a similar result for cohomology with coefficients in any Hn-
comodule M , but we are only interested in the case when M is the trivial comodule.)

Proof. Since Gn is the inverse limit of the finite groups P n
j , H∗

c (Gn,Fpn) may be
defined as follows – see [Ser02, I.2.2, Proposition 8]:

H∗
c (Gn,Fpn) = lim

−→
j

H∗(Pn
j ,Fpn).

Since Pn
j is finite and its group algebra is dual to Bn

j , we have an isomorphism

H∗(Pn
j ,−) ∼= Ext∗Bn

j
⊗Fpn (Fpn ,−). The result follows from the observation that

Hn = lim
−→

Bn
j . �

We also need the following. Here, ⊗ means ⊗k.

Lemma 4.2. Let C be a coaugmented coalgebra over a field k, and let F be a

field extension of k. Then there is an isomorphism of algebras Ext∗C⊗F (F, F ) ∼=
Ext∗C(k, k)⊗ F .

Proof. Take an injective resolution of k as a C-comodule, and tensor with F . The
result is an injective resolution of k ⊗ F = F as a C ⊗ F -comodule. �

Here is the main result of this section.

Theorem 4.3. Every positive-dimensional element in Ext∗Hn(Fp,Fp) is nilpotent.

Proof. As above, let F = Fpn . Hn⊗F is dual to the group algebra F[Gn], where Gn

is the group defined before Proposition 2.3. By Proposition 4.1, Ext∗Hn⊗F
(F,F) ∼=

H∗
c (Gn;F). Proposition 2.4 says that Gn is torsion-free, and so [Qui71, Proposition

13.4] applies, to say that every positive-dimensional element in Ext∗Hn⊗F
(F,F) is

nilpotent. Hence by Lemma 4.2, the same is true for Ext∗Hn(Fp,Fp). �

Given the description of the group G1 in Example 3.1, we expect these Ext
algebras to be infinitely generated. This contrasts with the situation for Morava
stablizer groups, some of which are Poincaré duality groups, and all of which have
reasonably well-behaved cohomology: [Rav86, Theorem 6.2.10] says that the coho-
mology of Sn is always finitely generated, and either satisfies Poincaré duality or is
periodic.
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Question 4.4. When n = 1, the corresponding group is a free abelian pro-p group,
and so every element in its cohomology has nilpotence height p. Is there a uniform
nilpotence height for the cohomology of Hn when n ≥ 2?

5. On the cohomology of the complete Steenrod algebra

As we discussed in the introduction, the results in this paper arose in part as an
attempt to study the cohomology of the complete Steenrod algebra. In this section,
we explore this algebra, its cohomology, and the relationship to Hn.

We start by recalling from [May70] the relationship between the Frobenius map

on a commutative Hopf algebra and the Steenrod operation P̃0 on Ext. As usual,
Ext is computed in the category of comodules.

Let B be a graded commutative Hopf algebra over Fp. By May’s work [May70],
one has Steenrod operations acting on Ext∗B(Fp,Fp). In this paper, we are only

interested in the operation called P̃0 (also called S̃q
0

when p = 2), which is an
operation

P̃
0 : Exts,t

B (Fp,Fp)→ Exts,pt
B (Fp,Fp).

Proposition 5.1 (Proposition 11.10 in [May70]). Let B be a graded connected

commutative Hopf algebra over the field Fp. The Frobenius map φ : b 7→ bp is

a Hopf algebra map, and the induced map φ∗ on Ext is the Steenrod operation

P̃0. �

We defined the dual complete Steenrod algebra Â in the introduction:

Â = lim
−→

(
Fp[ξn : n ≥ 1]→ Fp[ξ

p−1

n : n ≥ 1]→ Fp[ξ
p−2

n : n ≥ 1]→ · · ·
)

,

with the coproduct inherited from A. Arnon [Arn94, Arn00] defined the complete

Steenrod algebra, and we note that it is dual to Â. (This is also the assertion in
[LH96, Definition 3.6].)

Proposition 5.2. The dual Â∗ of Â is the complete Steenrod algebra.

Proof. The dual complete Steenrod algebra Â is defined as a direct limit. The

complete Steenrod algebra Â∗ is defined in [Arn00, p. 185] as the dual inverse
limit. �

Â inherits a grading from A: ξpk

n is in degree 2pk(pn−1) when p is odd, 2k(2n−1)

when p = 2. Thus Â is a Z[ 1
p
]-graded Hopf algebra. It is not finite-dimensional in

each grading, though, so while the monomial basis is a pleasant one for Â, there
is no nice basis for its dual. Furthermore, the dual is not graded anymore, strictly

speaking. In the language of [LH96, Definition 1.1], Â∗ is a “large” Z[ 1
p
]-graded

algebra – additively, it is not isomorphic to the direct sum of its homogeneous
pieces, but rather is a (proper) subgroup of the product of those pieces.

As far as we can tell, the cohomology of the complete Steenrod algebra has not
been studied in any published paper.

Proposition 5.3. The cohomology of Â is isomorphic to the cohomology of A with

the operation P̃0 inverted:

Ext∗
Â
(Fp,Fp) ∼= (P̃0)−1 Ext∗A(Fp,Fp).
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Proof. We may rewrite the direct limit defining Â as follows:

Â = lim
−→

(A
φ
−→ A

φ
−→ · · · ).

Coalgebra cohomology commutes with direct limits, so take Ext of this directed
system:

Ext∗
Â
(Fp,Fp) = lim

−→

(
Ext∗A(Fp,Fp)

φ∗

−→ Ext∗A(Fp,Fp)
φ∗

−→ · · ·
)

.

Proposition 5.1 says that φ∗ = P̃0, and this finishes the proof. �

As mentioned in the introduction, much of the work in this paper was motivated,
directly or indirectly, by Conjecture 1.4, which is equivalent to the statement that
every positive degree element in Ext∗

Â
(Fp,Fp) is nilpotent. Theorem 1.2 says that

this is true when p = 2.
For example, let p = 2. There is a family of cohomology classes {h1,k : k ∈ Z}

in the cohomology of Â, represented in the cobar complex by [ξ2k

1 ]. The classes
with k ≥ 0 lift to classes of the same name in Ext∗A(F2,F2), and in the cohomology
of A, h1,0 is non-nilpotent – its powers produce the spike in the zero stem at the
E2-term of the Adams spectral sequence – while h1,k is nilpotent when k ≥ 1. In
particular, h4

1,k = 0 for all k ≥ 1. These classes are connected by the algebra map

S̃q
0
: S̃q

0
(h1,k) = h1,k+1, so if h1,k is nilpotent, so is h1,k+1. In Ext∗

Â
(F2,F2), S̃q

0

has been inverted, so the relation h4
1,1 = 0 implies that h4

1,k = 0 for all k ∈ Z.
The multiplicative structure in the cohomology of the polynomial part of the odd

primary Steenrod algebra is less well-understood. For example, there are classes

h1,k ∈ Ext1A(Fp,Fp), for k ≥ 0, represented in the cobar complex by [ξpk

1 ]. These
classes are odd-dimensional, so by graded-commutativity of Ext, they square to
zero. There are related classes b1,k ∈ Ext2, though, which can be obtained by
applying the Bockstein operation to h1,k; equivalently, b1,k is represented in the
cobar complex by

p−1∑

i=1

1

p

(
p

i

)
[ξipk

1 |ξ
(n−i)pk

1 ].

One can show that b1,0 is non-nilpotent, in analogy with h1,0 at the prime 2. The
nilpotence (or lack thereof) of b1,k for k > 0 has not been determined in general;
a result of Nakamura [Nak75, Proposition 1.1(c)] shows that these classes are all
nilpotent when p = 3, and this is the best known result in this direction.

Given Conjecture 1.4, one could conclude that b1,k is nilpotent in Ext∗
Â
(Fp,Fp),

and hence b1,k is nilpotent in Ext∗A(Fp,Fp) for sufficiently large k. Then [Pal01,
Lemma B.3.3] would imply that b1,k is nilpotent for all k ≥ 1. In general, a
positive solution to Conjecture 1.4 would be a helpful step in trying to prove odd
primary analogues of the nilpotence and F -isomorphism results in [Pal99]. See
[Pal01, Conjecture 5.4.1] and the surrounding discussion.

We end this section by exploring the connection between the dual complete

Steenrod algebra Â and the Hopf algebras Hn, with an eye toward Conjecture 1.4.

The philosophy is that, while Â is defined by formally inverting the Frobenius
φ, Hn is defined by forcing φn to be the identity. At the level of cohomology,

P̃0 is invertible of infinite order in Ext∗
Â
(Fp,Fp), and it is invertible of order n

in Ext∗Hn(Fp,Fp). So one can hope that knowing that every positive-dimensional
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element in Ext∗Hn(Fp,Fp) is nilpotent would be relevant to studying nilpotence of

classes in Ext∗
Â
(Fp,Fp).

More formally, we start by noting that one can generalize the definition of Â; in
keeping with the definition and notation for Hn

j from Section 2, for any j ≥ 0 we
let

Âj = lim
−→

(
Fp[ξn : n ≥ j + 1]→ Fp[ξ

p−1

n : n ≥ j + 1]→ Fp[ξ
p−2

n : n ≥ j + 1]→ · · ·
)

.

Thus Â0 = Â, and Âj is a conormal quotient Hopf algebra of Âk whenever j ≥ k.

Note that for each n and j, one can view Hn
j as being a quotient of Âj :

Hn
j = Âj/(ξ

pn+k

i − ξpk

i : i ≥ 1, k ∈ Z).

Also, as noted in Proposition 3.4, Hn
j is a quotient of Hm

j whenever n divides m.
Thus for fixed j, the Hopf algebras Hn

j form an inverse system.

Proposition 5.4. Fix j ≥ 0. Âj embeds in the inverse limit of the Hopf algebras

Hn
j . This embedding is not an isomorphism.

Proof. The quotient maps Âj � Hn
j induce a map from Âj to the inverse limit,

and one can see that the kernel of the map to the limit is zero.

Let H∞
j be the inverse limit. To see that Âj is not isomorphic to H∞

j , we
note that there are elements in H∞

j of unipotence height p: elements x different
from 1 satisfying xp = x. To construct these elements, it suffices to construct a
family of such elements, one in each Hn

j , mapping to each other in the inverse

system. The relevant elements are ξpn−1
i , for each i > j – computations show that

(ξpn−1
i )p = ξpn−1

i , and that ξpnd−1
i in Hnd maps to ξpn−1

i in Hn. �

Question 5.5. (a) What does this imply about the cohomology of Â?

(b) What is the cokernel of the map Âj ↪→ lim
←−

Hn
j ?

(c) How are H∞
j and G∞

j (from Proposition 3.4) related? How are Âj and G∞
j

related?

Appendix A. Proof of Theorem 1.2

We restate the theorem.

Theorem 1.2. Let p = 2 and fix z ∈ Exts,t
A (F2,F2). If s is positive, then there is

an n so that (S̃q
0
)n(z) is nilpotent.

Proof. This follows from the main result of [Pal99].
In detail, for each pair of integers (S, T ) with 0 ≤ S < T , let RT,S be the

polynomial algebra

RT,S = F2[hts : 0 ≤ s ≤ S < T ≤ t].

Let R be the inverse limit of the RT,S under the apparent maps (map each polyno-
mial generator to the generator of the same name if present, and to zero otherwise).
Then

R = F2[hts : s < t]/(htshvu : u ≥ t).

Also, Rn,n−1 is the cohomology of this quotient Hopf algebra of A:

E(n) = A/(ξ1, . . . , ξn−1, ξ
2n

i : i ≥ n),
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with the polynomial generator hts corresponding to the cobar element [ξ2s

t ]. So
there is a restriction map

ρn : Ext∗A(F2,F2)→ Rn,n−1.

These can be assembled to give a map

ρ : Ext∗A(F2,F2)→ R,

and Theorems 1.3 and 1.4 of [Pal99] say that up to nilpotence, ρ is an isomorphism
between the cohomology of A and a certain subring of the codomain. In particular,
ρ is a monomorphism mod nilpotence.

Since ρ is the inverse limit of the maps ρn, and since each ρn is a restriction

map, ρ commutes with the action of S̃q
0
. Hence there is an induced map

ρ : (S̃q
0
)−1 Ext∗A(F2,F2)→ (S̃q

0
)−1R,

which is a monomorphism mod nilpotence. But the codomain is zero – the Frobe-
nius map acts nilpotently on each element of the Hopf algebra E(n). Equivalently,

at the level of cohomology, there is a multiplicative action of S̃q
0

on R, defined by

S̃q
0
(hts) = ht,s+1 if s + 1 < t, but S̃q

0
(ht,t−1) = 0. Thus for each element y ∈ R,

(S̃q
0
)n(y) = 0 for n sufficiently large. �
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