1. Determine if the following limits exist. If they exist, compute them. Justify your answers.
(a) (4 points) $\lim _{h \rightarrow 0}\left(\frac{6}{2 h-h^{3}}-\frac{3}{h}\right)$

$$
\begin{aligned}
\lim _{h \rightarrow 0}\left(\frac{6}{2 h-h^{3}}-\frac{3}{h}\right) & =\lim _{h \rightarrow 0} \frac{6-3\left(2-h^{2}\right)}{2 h-h^{3}} \\
& =\lim _{h \rightarrow 0} \frac{3 h^{2}}{2 h-h^{3}} \\
& =\lim _{h \rightarrow 0} \frac{3 h}{2-h^{2}} \\
& =0
\end{aligned}
$$

(b) (4 points) $\lim _{x \rightarrow 2} \frac{2 x^{2}-7 x-4}{x-2}$

The numerator is going to -10 and the denominator is going to 0 .
$x-2$ is negative when $x<2$ and positive when $x>2$.
Thus $\lim _{x \rightarrow 2^{+}} \frac{2 x^{2}-7 x-4}{x-2}=-\infty \quad$ and $\quad \lim _{x \rightarrow 2^{-}} \frac{2 x^{2}-7 x-4}{x-2}=\infty$
Since the left and right limits are not equal, the limit does not exist.
(c) (4 points) $\lim _{x \rightarrow-\infty} \frac{\sqrt{5 x^{4}+6}}{x^{2}-3 x}$

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{\sqrt{5 x^{4}+6}}{x^{2}-3 x} & =\lim _{x \rightarrow-\infty} \frac{\sqrt{5 x^{4}+6} \cdot \frac{1}{x^{2}}}{\left(x^{2}-3 x\right) \cdot \frac{1}{x^{2}}} \\
& =\lim _{x \rightarrow-\infty} \frac{\sqrt{5+\frac{6}{x^{4}}}}{1-\frac{3}{x}} \\
& =\sqrt{5}
\end{aligned}
$$

2. (7 points) Do not use any differentiation formulas in this problem. Use limits where appropriate. Find the slope of the tangent line to the curve $y=x^{2}+5 x \quad$ at the point $(1,6)$.

Let m be the slope of the tangent line at $x=1$. Then

$$
\begin{aligned}
m & =\lim _{h \rightarrow 0} \frac{y(1+h)-y(1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(1+h)^{2}+5(1+h)-6}{h} \\
& =\lim _{h \rightarrow 0} \frac{1+2 h+h^{2}+5+5 h-6}{h} \\
& =\lim _{h \rightarrow 0} \frac{7 h+h^{2}}{h} \\
& =\lim _{h \rightarrow 0} 7+h \\
& =7
\end{aligned}
$$

3. (7 points) A particle is travelling in a straight line. Its position is given by $x=\left(t^{2}-14\right) e^{t}$, where x is in feet and t is in seconds. Find all times when the acceleration of the particle is zero.

We must find when the 2nd derivative is zero.

$$
\begin{aligned}
\frac{d x}{d t} & =\left(t^{2}+2 t-14\right) e^{t} \\
\frac{d^{2} x}{d t^{2}} & =\left(t^{2}+4 t-12\right) e^{t} \\
0 & =\left(t^{2}+4 t-12\right) e^{t} \\
0 & =t^{2}+4 t-12 \quad \text { because } e^{t}>0 \\
& =(t+6)(t-2)
\end{aligned}
$$

Thus the two times are $t=-6$ and $t=2$.
4. (7 points) Let c be a constant. Define $F(x)$ by the piecewise formula

$$
F(x)= \begin{cases}c x^{2}-3 x & \text { if } x \leq-1 \\ c x+11 & \text { if } x>-1\end{cases}
$$

Find a value of c that makes F continuous on $(-\infty, \infty)$. Justify your answer. (Your justification should involve limits).

First note that, for any $c, F(x)$ is continuous if $x \neq-1$. Indeed, if $x>-1$ then $F(x)$ is a linear function and if $x<-1$ then $F(x)$ is a quadratic polynomial. These functions are always continuous.

Now consider $x=-1$. We must show that $\lim _{x \rightarrow-1} F(x)$ exists, and equals $F(-1)$.
Note that $F(-1)=c+3$
To show that the limit exists, we must show that the left and right limits are equal.

$$
\begin{aligned}
\lim _{x \rightarrow-1^{+}} F(x) & =\lim _{x \rightarrow-1^{+}} c x+11 \\
& =11-c \\
\lim _{x \rightarrow-1^{-}} F(x) & =\lim _{x \rightarrow-1^{-}} c x^{2}-3 x \\
& =c+3
\end{aligned}
$$

Note that the left limit equals $F(-1)$.
Thus it is enough to find a value c so that $\quad 11-c=c+3$.
$c=4$ is the value we want.
5. (7 points) Calculate the equation of the tangent line to $g(x)=\left|x^{2}-4 x\right|$ at $x=3$.
$g(x)= \begin{cases}-x^{2}+4 x & \text { if } 0<x<4 ; \\ x^{2}-4 x & \text { otherwise } .\end{cases}$
$g^{\prime}(x)= \begin{cases}-2 x+4 & \text { if } 0<x<4 ; \\ 2 x-4 & \text { otherwise } .\end{cases}$
$g^{\prime}(3)=-2, \quad g(3)=3, \quad y-3=-2(x-3)$
6. (10 points) Find the equations of all tangent lines to the curve $y=\frac{3 x+4}{2 x+5}$ that are parallel to the line $7 x-25 y=3$.

Note that the slope of the given line is $\quad m=\frac{7}{25}$.
We first find all x values where $\frac{d y}{d x}=\frac{7}{25}$.

$$
\begin{aligned}
\frac{7}{25} & =\frac{d y}{d x} \\
& =\frac{3(2 x+5)-2(3 x+4)}{(2 x+5)^{2}} \\
& =\frac{7}{(2 x+5)^{2}} \\
\frac{1}{25} & =\frac{1}{(2 x+5)^{2}} \\
(2 x+5)^{2} & =25 \\
2 x+5 & = \pm 5
\end{aligned}
$$

Thus $\quad x=-5,0$
Then $\quad y(-5)=\frac{11}{5} \quad$ and $\quad y(0)=\frac{4}{5}$
The lines are $\quad y-\frac{11}{5}=\frac{7}{25}(x+5) \quad$ and $\quad y-\frac{4}{5}=\frac{7}{25} x$

