1. Compute the derivatives of the following functions. Do not simplify your answers.
(a) (4 points) $g(t)=\tan ^{-1}\left(\frac{5 t+3}{t^{2}+4}\right)$

$$
g^{\prime}(t)=\frac{1}{1+\left(\frac{5 t+3}{t^{2}+4}\right)^{2}} \cdot \frac{5 \cdot\left(t^{2}+4\right)-2 t \cdot(5 t+3)}{\left(t^{2}+4\right)^{2}}
$$

(b) (4 points) $f(x)=\sqrt{\cos ^{2} x+5 x^{7}}$

$$
f^{\prime}(x)=\frac{-2 \cos x \sin x+35 x^{6}}{2 \sqrt{\cos ^{2} x+5 x^{7}}}
$$

(c) (4 points) $y=x^{\sqrt{x}}$

$$
\begin{aligned}
\ln y & =\ln x^{\sqrt{x}} \\
& =\sqrt{x} \cdot \ln x \\
\frac{1}{y} \cdot y^{\prime} & =\frac{1}{2 \sqrt{x}} \cdot \ln x+\sqrt{x} \cdot \frac{1}{x} \\
y^{\prime} & =x^{\sqrt{x}} \cdot\left(\frac{1}{2 \sqrt{x}} \cdot \ln x+\sqrt{x} \cdot \frac{1}{x}\right)
\end{aligned}
$$

2. (10 points) Consider an object moving along the parametrized curve with equations:

$$
x=\sqrt{t}, \quad y=\frac{t^{2}}{16}
$$

where t is in the time interval $[1,5]$ seconds. Calculate the maximum speed of the object in the time interval.

Let v be the speed. Then $v=\sqrt{\dot{x}^{2}+\dot{y}^{2}}$.
We will maximize $v^{2}=\dot{x}^{2}+\dot{y}^{2}$
$\dot{x}=\frac{1}{2 \sqrt{t}} \quad \dot{y}=\frac{t}{8}$
$v^{2}=\frac{1}{4 t}+\frac{t^{2}}{64}$
$\frac{d}{d t} v^{2}=\frac{-1}{4 t^{2}}+\frac{t}{32}=\frac{-8+t^{3}}{32 t^{2}}$
The critical values are $t=0,2$. Only $t=2$ is in the domain.
We must calculate v^{2} at $t=1,2,5$.
$v^{2}(1)=\frac{17}{64}=0.265625$
$v^{2}(2)=\frac{3}{16}=0.1875$
$v^{2}(5)=\frac{141}{320}=0.440625$
The maximum speed is $v=\sqrt{\frac{141}{320}} \approx 0.6638$
3. (8 points) Find the critical numbers of the function $F(x)=x^{1 / 3}\left(x^{2}+2 x\right)$

$$
\begin{aligned}
F^{\prime}(x) & =\frac{1}{3} x^{-2 / 3}\left(x^{2}+2 x\right)+x^{1 / 3}(2 x+2) \\
& =\frac{x^{2}+2 x+3 x(2 x+2)}{3 x^{2 / 3}} \\
& =\frac{7 x^{2}+8 x}{3 x^{2 / 3}} \\
& =\frac{7}{3} x^{4 / 3}+\frac{8}{3} x^{1 / 3} \\
& =\frac{1}{3} x^{1 / 3}(7 x+8)
\end{aligned}
$$

Solve $0=x^{1 / 3}$ to get $x=0$.
Solve $0=7 x+8$ to get $x=-\frac{8}{7}$
The critical numbers of $F(x)$ are $x=0,-\frac{8}{7}$.
4. (8 points) Check that the point $(2,-1)$ is on the curve $x^{3}+3 x y+2 y^{3}=0$. Use the tangent line to approximate the x-coordinate of a point on the curve if the y-coordinate is -1.03 .

Check: $(2)^{3}+3(2)(-1)+2(-1)^{3}=8-6-2=0$
Compute the slope of the tangent line at $(2,-1)$:

$$
\begin{aligned}
0 & =3 x^{2}+3 y+3 x y^{\prime}+6 y^{2} y^{\prime} \\
& =3(2)^{2}+3(-1)+3(2) y^{\prime}+6(-1)^{2} y^{\prime} \\
& =9+12 y^{\prime} \\
-\frac{3}{4} & =y^{\prime}
\end{aligned}
$$

The equation of the tangent line at $(2,-1)$ is $y+1=-\frac{3}{4}(x-2)$
Use the tangent line to approximate x :

$$
\begin{aligned}
(-1.03)+1 & =-\frac{3}{4}(x-2) \\
0.04 & =x-2 \\
2.04 & =x
\end{aligned}
$$

5. (0 total points) The length of a rectangle increases by 3 feet per minute while the width decreases by 2 feet per minute. When the length is 15 feet and the width is 8 feet, what is the rate at which the following changes. Make sure to state whether the rate is increasing or decreasing and include units.
(a) (4 points) The area.

Let x be the length of the rectangle and y be the width.

$$
\begin{aligned}
A & =x y \\
\frac{d A}{d t} & =\frac{d x}{d t} y+x \frac{d y}{d t} \\
& =3 \cdot 8-15 \cdot 2 \\
& =-6
\end{aligned}
$$

The area is decreasing at a rate of $6 \mathrm{ft}^{2} / \mathrm{min}$.
(b) (4 points) The perimeter.

$$
\begin{aligned}
P & =2 x+2 y \\
\frac{d P}{d t} & =2 \frac{d x}{d t}+2 \frac{d y}{d t} \\
& =2 \cdot 3-2 \cdot 2 \\
& =2
\end{aligned}
$$

The perimeter is increasing at a rate of $2 \mathrm{ft} / \mathrm{min}$.
(c) (4 points) The length of the diagonal.

$$
\begin{aligned}
D & =\sqrt{x^{2}+y^{2}} \\
\frac{d D}{d t} & =\frac{2 x \frac{d x}{d t}+2 y \frac{d y}{d t}}{2 \sqrt{x^{2}+y^{2}}} \\
& =\frac{x \frac{d x}{d t}+y \frac{d y}{d t}}{\sqrt{x^{2}+y^{2}}} \\
& =\frac{15 \cdot 3-8 \cdot 2}{\sqrt{15^{2}+8^{2}}} \\
& =\frac{29}{17} \\
& \approx 1.706
\end{aligned}
$$

The diagonal is increasing at a rate of $\frac{29}{17} \mathrm{ft} / \mathrm{min}$.

