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The Missouri lottery, a profit-driven nonprofit organization, generates annual revenues of over $800 million by
selling lottery tickets; 27.5 percent of the revenue goes to Missouri’s public education programs. The lottery
sales representatives (LSRs) play a central role in increasing sales by providing excellent customer service to
ticket retailers throughout the state. Hence, LSRs must have equitable, balanced work schedules and efficient
routes and navigation sequences. Our objective was to provide scheduling and routing policies that minimize
LSRs’ total travel distance while balancing their workloads and meeting visitation constraints. We modeled the
problem as a periodic traveling-salesman problem and developed improvement algorithms specifically to solve
this problem. The newly implemented schedules and routes decrease the LSRs’ travel distance by 15 percent,
improve visitation feasibility by 46 percent, increase the balance of routes by 63 percent, decrease overtime days
by 32 percent, and indirectly increase the sales of lottery tickets by improving customer service.

Key words : games, group decisions: gambling; transportation: vehicle routing.
History : This paper was refereed.

The Missouri lottery operates as a state agency
under the state’s department of revenue. State

statutes and the legislature restrict and monitor it as
a nonprofit state agency. However, the Missouri lot-
tery’s business is to produce revenue by selling tickets
and to bring profit to the state education fund. Hence,
it is characterized as a profit-driven nonprofit organi-
zation. Its goals are to provide good quality service
to the public and to increase revenue and profit at a
minimal cost.
The Missouri lottery’s profits have risen steadily,

and the lottery has produced more than $2.2 billion
for the state since it was established in 1986. During
fiscal year 2004, it transferred $230.3 million to ele-
mentary, secondary, and higher education. Of every
dollar that goes into a lottery game, 60.5 cents are
paid out in prizes, about 27.5 cents are later spent
on education, and the remaining 12 cents go for
administrative costs and incentives for retailers. Pro-
ceeds from the lottery represent about three percent of
state spending on elementary, secondary, and higher

education in Missouri (Columbia Daily Tribune 2004).
The lottery increased revenues by increasing jackpot
amounts, introducing new games, and making inno-
vations. The Missouri lottery recognizes the impor-
tance of these initiatives and is always seeking ways
to streamline its operation.
The Missouri lottery comprises five divisions: Exec-

utive, Marketing, Finance and Administration, Com-
munication, and Security. The marketing division
provides service to lottery ticket retailers and han-
dles procurement and sales promotions. The lottery
sales representatives (LSRs) and the tell-sell market-
ing representatives (TMRs) serve and manage retail-
ers. The LSRs are external agents, visiting retailers
and meeting their requirements. The TMRs are inter-
nal agents who make and receive calls concerning
ticket orders and requests. These two teams of repre-
sentatives increase sales by providing quality service
to ticket retailers.
Because of their importance, the LSRs need equi-

table and balanced work schedules and efficient
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routes and visiting sequences. The policy for schedul-
ing and routing the LSRs had never been scientifi-
cally evaluated. The Missouri lottery contacted those
of us from the university in 2002 to develop efficient
solutions to its LSR scheduling and routing prob-
lems. Our goal was to minimize the LSRs’ total travel
distance while balancing their workloads and satis-
fying visitation constraints. To develop and imple-
ment such a policy, we relied on close collaboration
between the research team and the Missouri lottery.
The lottery appointed a project committee, consisting
of the director of marketing, the re-operation man-
ager, the research and development manager, the sales
managers, several LSRs, and other sales and market-
ing personnel. This committee was actively involved
throughout the project.

Problem Description
The Missouri lottery headquarters are in Jefferson
City, and it has regional offices in Springfield, Kansas
City, and St. Louis. Each of four regions has a regional
sales manager and several district sales managers,
who oversee office operations and supervise the LSRs.
The number of LSRs in each region depends on the
number and size of ticket retailers. The sales man-
agers and LSRs review and arrange the LSRs’ service
routes to ensure balance and efficiency.
The Missouri lottery employs 39 LSRs statewide to

cover more than 5,000 ticket retailers. In our analy-
sis, the exact number was 5,043, although the num-
ber changes frequently. Each sales representative is
assigned about 130 retailers in a given geographical
region. Assignments are usually divided by county
in rural areas and by major streets or highways in
urban areas, such as St. Louis and Kansas City. The
representatives generally visit the ticket retailers once
every other week, although they visit those with
very high sales volumes every week. During each
visit, the LSR checks on product inventory, replen-
ishes supplies and ticket stock, collects returned tick-
ets, presents statewide promotions, contacts decision
makers, cleans the point-of-sale counters, inspects
game equipment (such as instant ticket-vending
machines, online terminals, and Keno machines), and
files administrative forms (Figure 1).
The LSRs are categorized as local or remote. The

local LSRs work from the office; the remote LSRs

Start

Arrive at a retailer
carrying supplies

Discuss with
a decision maker

Contact decision
maker

Ask for return tickets

Check and replenish product
inventory and supplies

Clean counters and
fix equipment

Wrap up the service

End

Yes
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Figure 1: The lottery sales representative’s (LSR’s) routine business pro-
cesses in visiting retailers include checking on product inventory, replen-
ishing supplies and ticket stock, collecting returned tickets, presenting
statewide promotions, contacting decision makers, cleaning the point-
of-sale counters, inspecting game equipment, and filing administrative
forms.

start their routes from their homes. All LSRs attend
a regular meeting every other week scheduled by the
regional office to learn about new games and promo-
tions and to discuss administrative issues. The remote
LSRs usually take the opportunity to pick up enough
point-of-sale items from the warehouse to last them
until the next regular meeting.
Initially we designed efficient and balanced routes

for the LSRs without changing their assigned retail-
ers. By reassigning retailers, we could have achieved
greater efficiency, but upper management was reluc-
tant to sanction such a drastic change. Many LSRs
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have served the same retailers for over 10 years.
Changing retailer assignments could jeopardize close
and longstanding relationships with managers and
owners and compromise service quality. It would
also complicate the implementation of our results and
cause the LSRs to resist route changes. Therefore, we
took a gradual approach, improving the routes of the
LSRs in their existing territories.
We had multiple objectives. The most important

one was to decrease mileage and thereby the costs
of operating the LSRs’ vans, the LSRs’ driving times,
and possibly the number of LSRs.
The second objective was to balance the LSRs’

routes. Many LSRs work as much as 12 hours on
some days because they would rather cover a cer-
tain geographical area in one trip than in several. This
behavior does not increase the lottery’s cost because
all LSRs are salaried. However, the managers believe
that the LSRs’ working such long hours provide infe-
rior service.
The third objective was to insure that routes

conform to retailers’ time windows. Some ticket retail-
ers ask the LSRs to visit at certain times. For exam-
ple, some bars and clubs open in the afternoons,
so the LSRs cannot schedule visits in the mornings.
Other stores and restaurants want the LSRs to avoid
their peak operating times, usually lunch hours. Some
owners and managers of stores want the LSRs to visit
when they are available so they can handle the lottery
tickets. Although it is preferable to respect such time
constraints, they are not inviolable.
Unfortunately, these objectives sometimes conflict.

For example, balancing route times may cause inef-
ficiencies because the LSRs should return home after
about eight working hours even if the next retailer to
visit is very close to the last stop of the day. Visit-
ing that retailer the following day incurs additional
driving time, which means inefficiency. The challenge
comes in coordinating these three important, possi-
bly incompatible objectives: efficiency, balance, and
feasibility.

Related Work
Our problem is closely related to other practi-
cal routing and scheduling problems. Waste Man-
agement, which provides waste-collection services,

developed a comprehensive route-management sys-
tem that improved its routing, dispatching, mainte-
nance, and management of its large fleet of vehicles
(Sahoo et al. 2005). It used variations of the vehicle-
routing problem (VRP) with time windows and addi-
tional constraints, mainly to minimize the number of
vehicles and travel time. The company expected to
save $44 million by reducing the number of collection
routes by 10 percent.
Schindler Elevator Corporation, which designs,

manufacturers, installs, maintains, and modernizes
internal transport systems for almost every type of
building, developed an automated route-scheduling
and planning system to optimize its technicians’ ser-
vice routes. The system assigned maintenance work
to technicians and created efficient day routes by solv-
ing the periodic VRP. Using these automated tools,
Schindler saved more than $1 million annually and
increased managers’ awareness of operating revenue
(Blakeley et al. 2003).
TransAlta Utilities, Canada’s largest publicly

owned electric utility company, used facility location
and vehicle-routing heuristics to establish call centers
and redesign its service-delivery network (Erkut et al.
2000).
Weigel and Cao (1999) developed algorithms for

the VRP with time-window constraints to solve Sears’
technician-dispatch and delivery-schedule problem.
A solution minimizing an objective function, which
includes travel time, route duration, a time-window-
violation penalty, and waiting time, resulted in more
than $9 million in one-time savings and more than
$42 million in annual savings.
Adenso-Diaz et al. (1998) applied a hierarchical

approach to design and implement a decision-support
system to organize the delivery network for the prod-
ucts of a large dairy in Spain. Their objectives were
to fairly distribute clients among vendors and to
save traveling distance in each vendor’s route. They
used a traveling-salesman problem (TSP) model with
time-window constraints and claimed about 10 per-
cent savings when all their recommendations were
implemented.
In 1994, IBM developed a crew-planning-

optimization system (CPOS), which US Airways and
Southwest Airlines used. In its 1996 annual report, US
Airways said CPOS saved the company $50 million
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annually (Anbil et al. 1999). In a 1998 IBM press
release, Al Davis, vice president of special projects
at Southwest Airlines, said “CPOS generates daily,
weekend and transition pairing solutions in a fraction
of that time, while reducing aircraft ground time,
crew work hours, flight schedule costs and, more
importantly, improving quality of life for airline crews
and schedulers.”
Even small companies are taking advantage of sci-

entific and competent scheduling systems. Martin
(1998) studied the efficiency of product distribution
for a centralized bakery. He claimed that the cost
saving from minimizing routes was insignificant but
meeting delivery times at low cost affected profit sig-
nificantly. He used a simulation process to validate
new routes.
Begur et al. (1997) developed a spatial decision-

support system to schedule available nurses to go
to patients’ homes and determine their travel routes.
They used the TSP solution based on the Clarke and
Wright’s (1964) savings-type route-building heuristic.
After minimizing the total travel time, the estimated
savings were more than $20,000 per year in travel
expenses, paperwork time and cost, and nursing per-
sonnel requirements.
Weintraub et al. (1996) developed an operative and

computerized system based on a simulation process
with heuristic rules to support daily truck schedul-
ing and routing decisions in the forest industry. They
claimed that many firms reduced their total trans-
portation costs by as much as 20 percent.
The application of new thinking is not limited

to commercial companies. In 1990, North Carolina’s
department of public instruction spent over $147 mil-
lion and used more than 13,000 yellow buses to trans-
port students to and from school. By modifying bus
routes and schedules and reducing the number of
buses, the state saved approximately $7 million annu-
ally in operating costs (Sexton et al. 1994).
The scheduling and routing problem we consid-

ered theoretically belongs to the periodic-traveling-
salesman problem (PTSP) category in the operations
research literature. It is a generalization of the well-
known TSP and is a difficult optimization problem.
(Gutin and Punnen 2002, Lawler et al. 1985 review
the TSP.) In the classical TSP, a salesman starts from
a home city, visits each customer exactly once, and

returns home. The planning period is usually one
day, so one needs to create a minimum cost cycle
for customers who must be visited on that day. The
PTSP extends the planning period to M days. Over
the M-day period, each customer must be visited
at least once; some customers require several visits.
The objective is usually to minimize travel distance
or time while satisfying certain time and visit con-
straints. Unlike the classical TSP, the PTSP is the sub-
ject of few published results. Christofides and Beasley
(1984) originally proposed a heuristic for the PTSP
with an explicitly specified set of visit-day combi-
nations for each city. Chao et al. (1995) and Paletta
(1992, 2002) also considered the PTSP and presented
improved heuristic algorithms. Because of the com-
plexity and size of the problem, obtaining an opti-
mal solution is often impractical or impossible. Hence,
researchers commonly use various heuristics to find
reasonably good solutions within acceptable compu-
tational times. In our project, we developed several
improvement algorithms specifically for our problem
by modifying known heuristics.
Although our project overlaps others in some

respects, it includes several unique and interesting
features and results. Applications of the TSP and
the VRP have been among the great success sto-
ries of operations research; however, most of the
successes occurred at for-profit commercial compa-
nies. Our application problem occurred in a nonprofit
state-government agency. The mathematical model of
our project is also a little-investigated PTSP prob-
lem, and we particularly emphasized balance among
routes and route distance in an objective function;
typical applications focus on route minimization pos-
sibly with time-related constraints.

Data Collection
We conducted two surveys and several interviews
to get input from the sales force before diving into
detailed analysis. We collected and analyzed three
major categories of data. The first category was
the specific information about retailers. The exist-
ing Missouri lottery database contained such basic
information as retailers’ addresses, telephone num-
bers, latitude and longitude, store types, accounting
and billing options, types of games sold, types of
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machines used for games, and sales volumes. We
needed more information for our analysis.
In the first survey, we obtained information about

service times during LSR visits and the time-related
constraints for each retailer. The survey results
showed that LSRs spent an average of 19.6 minutes
at a retailer. The LSRs responded that 94.4 percent of
their visits took between 10 and 30 minutes, while
the remaining 5.6 percent took more than 30 minutes.
Most LSRs stated that the longer stops were associ-
ated with equipment problems, billing adjustments,
ticket returns, special ticket orders, and new accounts.
The LSRs also rated different factors’ effect on their
service times. Among these factors, types of games
sold and sales volume significantly affected service
times. Based on the results of the survey, we catego-
rized ticket retailers and estimated the average ser-
vice time for each group, with the total average time
being 20 minutes. We later confirmed our estimates in
our rides and visits with the LSRs. In this survey, the
LSRs also listed any visitation time windows associ-
ated with various retailers.
We obtained a set of data on driving distances and

times between retailers. We used commercial map-
ping software after transferring location information
from the lottery database to determine these val-
ues. While the driving distance is straightforward, the
driving time depends on the driver and on traffic con-
ditions. We first computed street-based travel distance
and time, assuming that the driving speed was the
local speed limit. Then, we adjusted the travel time to

Structured data

Optimal routes

Geo-code data

Distance and
time data

Other data

Maps, routes, and
schedules

Map software

Data analysis program

Map software

Main analysis program

Figure 2: In the automated scheduling and routing system we developed, the commercial mapping software
computes street-based travel distances and times at the beginning and creates graphical routes and time-specific
schedules at the end. Our data-analysis program compiles data to fit a structured format that is easy to use and
update. Our main analysis program uses several improvement heuristics specifically developed for the problem.

120 percent of that time in rural areas and 150 percent
in urban areas, to account for slow drivers and city
traffic.
Our third set of data concerns the LSRs’ current

working schedules and routes. In our second survey,
we asked the LSRs to record their daily activities for a
two-week period. They provided us with office time,
traveling time, starting and ending times of each day,
and location information, such as their starting and
ending places, and exact sequence of visits to retailers.
We used this information to design our solution. We
wanted to preserve as many of the LSRs’ activities
as possible so that the implementation of new routes
would be minimally inconvenient and complicated.
We used these original routes as an initial solution in
our program.

Analysis and Solution Procedure
After collecting the data, we compiled it to fit the
structured format required by our main analysis pro-
gram and to make it easy to update. Our data-analysis
program performs this process automatically. At the
end of the analysis, we used commercial map soft-
ware as a graphical tool to illustrate the outcome of
our analysis. It generates new routes and time-specific
schedules for the LSRs (Figure 2).
Our algorithm determines the daily routes for a

biweekly (10 day) planning period by simultane-
ously finding the best allocation of retailers over the
period and the best visiting sequence within each
daily route. Suppose that an LSR must visit n retailers
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during the 10-day period. We use the following
attributes:

t: designation of the day in the planning period,
t = 1�2� � � � �10.

i� j : designation of the retailer, i� j = 1�2� � � � �n.
dij : travel distance from retailer i to retailer j .
cij : travel time from retailer i to retailer j .
si: service time required for retailer i.

li� ui: earliest and latest arrival times at retailer i.
The LSR should be at retailer i between li and ui,

but a violation is acceptable. Subscript 0 represents a
depot (home or office) for the route.
We use a set of decision variables xijt , which has the

value 1 if the LSR travels from retailer i to retailer j
on day t, and 0 otherwise. The travel distance of the
LSR on day t, Dt , is

Dt =
n∑

i=0

n∑

j=0
dijxijt �

Because the LSR’s travel time and service time on
day t are

n∑

i=0

n∑

j=0
cijxijt and

n∑

i=0

n∑

j=0
sixijt�

respectively, the LSR’s total working time on day t,
Ct , is

Ct =
n∑

i=0

n∑

j=0
�cij + si�xijt �

The lottery management would like the LSRs to
work similar hours every day, that is, balanced
routes. Working eight hours one day and seven hours
another day is better than working nine hours one
day and six hours the next. To measure the balance
of individual routes, we derived a balance metric
using the mean square deviation, which measures the
squared difference between the length of individual
routes and the average route length for each LSR as
follows:

balance metric=
10∑

t=1
�Ct − �C�2�

where �C =∑10
t=1Ct/10.

We use a weighted objective function composed
of a term for minimizing travel distance and a term

for penalizing imbalanced routes. Hence, the objective
function becomes

K�xijt�=w1

10∑

t=1
Dt +w2

10∑

t=1
�Ct − �C�2� (1)

where w1 and w2 are weights used to adjust the
importance of different factors.
The workday without overtime is easily deter-

mined using Ct such that

Ct ≤ 8� (2)

On days when the regional office holds the LSR’s
biweekly meetings, the workday is limited to five
hours, such that Ct ≤ 5. Let �k� be the kth retailer the
LSR visits during day t. Suppose that �k�= j . That is,
retailer j is the kth retailer in the LSR’s visitation
sequence on day t. The values of �k� can be computed
easily from the values of xijt . Then, the arrival time
of the LSR at retailer j is

∑k−1
i=0 �c�i��i+1� + s�i��, and the

time-window constraint for retailer j becomes

lj ≤
k−1∑

i=0
�c�i��i+1� + s�i��≤ uj � (3)

Our objective is to minimize the value in (1) and
simultaneously to increase the number of days satis-
fying Equation (2) and the number of retailers satisfy-
ing Equation (3). These objectives may conflict, so we
need to balance them, not just simply minimize the
objective function. Because our problem is complex,
we used a heuristic technique.
We used the LSR’s old schedules and routes as ini-

tial routes and chose only improved solutions that sat-
isfied certain criteria in our analysis. However, in the
absence of existing routes, we would need to create
initial routes to transfer our method to other settings
and to obtain different final solutions, whose qualities
depend on the initial routes.
We could use many heuristic algorithms to con-

struct initial 10 routes for each LSR, but we tried a
cluster-first, route-second type algorithm similar to
Fisher and Jaikumar’s (1981). The algorithm starts
with 10 seed retailers and expands routes by insert-
ing nearest retailers. The seed retailers chosen affect
the quality of the initial routes, which, in turn, deter-
mines the quality of the final solution. In our analysis,
we manually selected seed locations in consultation
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with managers and the LSRs, who are familiar with
retailer locations. However, we could have selected
seed locations randomly or systematically. For exam-
ple, Fisher and Jaikumar claimed that customers often
lie along radial corridors corresponding to major thor-
oughfares; hence, the most distant customers along
these corridors are natural seed customers. After we
decide on the seed locations, we select the nearest
unassigned retailer and assign it to a route without
violating the time constraint (2). If we can assign all
the retailers without violating the constraint, we have
our initial 10 routes, which require no overtime work.
Even if we cannot avoid the violation, we continue
assigning retailers to routes, in the expectation that
we will improve the routes later through the follow-
ing improvement algorithms:
—The interroute-improvement heuristic iteratively

transfers retailers from one route to another or
exchanges retailers between two different routes. It
proceeds by choosing a subset of retailers and enu-
merating the possible combinations of visits for this
subset, seeking an improved solution.
—The intraroute-improvement heuristic applies a

local optimization technique to each route separately
to improve the objective function value of the route.
It uses Lin’s (1965) well-known 2-opt edge-exchange
heuristic.
—Our algorithm accepts new solutions generated

by interroute-improvement or intraroute-improve-
ment heuristics if they decrease the objective function
value (1) without increasing the number of days and
retailers violating (2) or (3). Even though the new solu-
tion increases the objective function value (1), it is also
accepted if the increase is less than � and if it increases
the number of days and retailers satisfying (2) or (3).
In other words, the algorithm accepts a worse solu-
tion if it mitigates certain constraints. It also helps us
find a globally optimal solution getting out of the local
optima.
Our algorithm repeats the interroute- and

intraroute-improvement heuristics until no new
solution satisfies the given acceptance criteria. When
it is finished, it creates a daily route for each of the
planning periods. By adjusting the values of w1, w2,
and �, we can generate a variety of policies with
different characteristics and select the one that best
fits the given situation.

There are multiple ways to adjust the values of the
parameters. The systematic method we used was to
iteratively increase the values of w2 and � while main-
taining w1 = 1. At the beginning, we set w2 = � = 0.
That is, we solve a typical TSP with a distance min-
imization objective. Then, we try to find alternative
solutions as we increase the value of w2. In other
words, we investigate solutions with more balanced
routes but potentially with longer driving distances.
We repeat the process with increased values of �,
which is specified as a percentage of the known best
solution during the iteration process, starting from
one percent. For example, if the known best solution
has the distance x, we select a new solution with a
distance less than �1+��x, which can be worse than
the known best solution as long as it satisfies more
constraints. That is, we look for solutions satisfying
more constraints at the expense of efficiency.
We repeat the algorithm until we identify several

potential solutions. The managers at the Missouri
lottery along with the researchers determine a final
solution that has good efficiency and balance after
inspecting quantitative measures, such as driving
mileage, balance, and constraint violation, and quali-
tative information, such as routing maps.

Implementation Issues
As is common, we had some problems during imple-
mentation. We had to deal with unexpected issues
and modify our results so they could be successfully
implemented. Despite careful planning and data col-
lection, we discovered many errors in the retailers’
geographic information in the lottery database and in
the survey data. Correcting them took a lot of time.
After modifying the necessary information, we dis-

tributed our new results to managers and the LSRs
to elicit their feedback. Many LSRs liked their new
routes from the beginning; several suggested fur-
ther changes. They often based these suggestions on
their experiences and human considerations, which
our analysis could not capture. For example, they
mentioned traffic congestion in some areas on Friday
afternoons, the difficulty of making left turns at
certain intersections, dangerous highway exits, and
neighborhoods that were unsafe late in the afternoon.
Managers also wanted good-looking routes with bet-
ter clusters of retailers and less overlapping and cross
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Figure 3: The new scheduling and routing policy results in an average saving of about 15 percent per lottery
sales representative (LSR). It saved less than 10 percent for 17 LSRs, between 10 and 20 percent for 14 LSRs,
and more than 20 percent for eight LSRs.

over between routes. The visual attractiveness of a
solution, which depends on how stops are grouped
in a route, is an important criterion in many practical
routing applications (Kim and Kim 2003, Poot et al.
1999). Based on managers’ and the LSRs’ suggestions,
we modified many routes even when changes came
at the expense of efficiency. These changes definitely
facilitated implementation. The LSRs were excited to
have new routes that they and we liked, and they
were likely to use them.

Cost Saving and Benefits
Our primary objective in this project was to decrease
the LSR’s driving distance and time. The other crite-
ria were feasibility of routes, balanced working hours,
and a decrease in overtime days. The routes we
obtained are superior to the old routes in all of these
respects.
Our results are based on our analysis of the

39 statewide LSRs. Their total driving distance based
on the old routes was 34,564 miles every two weeks.
The new schedule has a driving distance of 29,374
miles. Thus, the new policy saves 5,190 miles every
two weeks, an average saving of about 15 percent
per LSR. The largest individual saving was 46 per-
cent; the smallest was two percent. Several LSRs had
been using very efficient routes. We saved less than

10 percent for 17 LSRs, between 10 and 20 percent
for 14 LSRs, and more than 20 percent for eight LSRs
(Figure 3).
According to the study of Crowe et al. (2000) on

the operation of the Missouri lottery, the procurement
cost of LSR vans is 18.7 cents per mile and the cost of
gas is 10.2 cents per mile, based on their calculation
of 17.66 miles per gallon and the prevailing gas price
of $1.80 per gallon in 2004. If we add the average
vehicle-maintenance cost of 6.1 cents per mile (AAA
Midwest Traveler 2004), the total operation cost of
LSR vans is 35 cents per mile. Because our improve-
ment is equal to an annual saving of 134,940 driving
miles, the total cost saving from the decreased driving
mileage is approximately $47,229 per year.
The new policy also decreases LSRs’ traveling

hours from 921 to 789 for the two-week period. This
saving is equal to 1.65 LSR-hours, assuming 40 work-
ing hours per week. The value of annual saving
would be $51,419 based on the LSR’s average annual
salary of $31,163, although the lottery does not save
this amount while it maintains 39 LSRs. However, the
LSRs can now spend the time recruiting new ticket
retailers and handling additional documentary work,
which they previously could not do because of their
tight work schedules.
In addition to these direct cost savings, the new

routes provide other benefits, whose monetary values
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Figure 4: In this example of time analysis of the LSR’s routes, the left half of the figure represents an LSR’s
former biweekly routes and the right portion is the new routes. The bars are divided into driving times (bottom)
and service times (top). This LSR used to drive 1,102 miles and now drives 945 miles biweekly, a 14.2 percent
decrease saving 3.58 hours. Moreover, the new routes provide a much more balanced schedule. The LSR worked
over eight hours on four days under the old schedule, but now can finish every route within eight hours.

are somewhat difficult to quantify. While the old
routes violated 162 time-window constraints, the new
schedule has only 87 violations, a 46-percent feasibil-
ity improvement. This improvement directly affects
the quality of customer services and increases cus-
tomer satisfaction, which indirectly affects the ticket
sales. The violations of time-window constraints
expressed as a percentage of the total number of
retailers was 3.2 percent (162 violations out of 5,043
retailers), which does not seem to be a prevalent prob-
lem. However, if we consider only the 427 retailers,
who originally had time-window constraints, the per-
centage of violations was 38 percent (162 violations
out of 427 retailers) and is now 20 percent (87 viola-
tions out of 427 retailers) using the new routes.
We measured the balance of individual routes using

the new balance metric. The sum of the balance metric
values for all LSRs has decreased from 1,103 to 410,
a 63 percent enhancement (Figure 4). Another way
to identify the balance of routes is to count days
of overtime. The old schedule had 113 routes that
required the LSRs to work more than eight hours,
including both driving and service times. The new
schedule has 77 such routes, representing a 32 percent
improvement. Overtime is a prevalent problem. The
percentage of the LSRs’ overtime days was 29 per-
cent (113 routes out of 390 routes) and is still 20 per-
cent (77 routes out of 390 routes) after implementing

better routes. However, the new schedule decreases
the number of very long work days, dropping days
with more than nine working hours from 55 to 18, a
67 percent improvement and days with more than 10
working hours from 39 to 4, a 90 percent improve-
ment. The more balanced routes should improve the
quality of LSR service to ticket retailers.
We plotted retailers using latitude and longitude

and constructed routes by linking retailers with
straight lines instead of with street-based connections
(Figure 5). One important and unique result of our
analysis is the list of direct comparisons between old
and new routes by the LSRs. This list offers practi-
tioners interested in employing an optimized routing
system a guideline to estimate the potential cost sav-
ing in their operations. On the other hand, the authors
of almost all the published work just aggregated cost
savings in dollar terms. These figures are important
but not very useful for computing estimated benefits
in other companies. Moreover, we explicitly compare
optimal routes with actually implemented routes after
considering feedback from the Missouri lottery.

Extension—Retailer Reassignment
The Missouri lottery managers wanted to maintain
the number of LSRs and the retailers assigned to them
during the project to avoid disrupting their opera-
tions. However, the successful implementation of our
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Figure 5: Map A represents a lottery sales representative’s (LSR’s) old
routes, several of which are inefficient and overlapping. This LSR drove
1,432 miles on these routes in two weeks. Map B shows the routes
the research team originally proposed. Although they include some
crossovers and overlaps, the routes are very efficient, with only 1,022
driving miles, a 28.6 percent reduction. Map C represents the final routes
after we modified the optimal routes based on feedback from the LSR and
sales managers. The final routes are visually attractive with good clus-
ters of retailers. However, they require 1,112 driving miles, only a 22.3
percent improvement over the old routes.

results gave them confidence to make more radical
changes to improve efficiency. We are developing LSR
routes for different numbers of LSRs with new retailer
assignments. We are using clustering and assignment
algorithms to assign retailers to the LSRs. Once we
finish assigning retailers, we can develop new routes
using our existing algorithms.
The essence of our reassignment problem is to par-

tition a set of retailers into p mutually exclusive and
collectively exhausting groups, restricting the size of
each group based on estimated driving and service
times. We use a variation of the capacitated cluster-
ing algorithm to create regions or clusters of retailers.
The capacitated clustering problem belongs to an NP
category, and many clustering and location heuris-
tics depend on local improvements and greedy algo-
rithms. Our heuristic also uses algorithms similar to
MacQueen’s (1967) p-means algorithm and the primal
heuristic developed by Mulvey and Beck (1984) and
Koskosidis and Powell (1992).
We start with a set of p starting medians, which

include home or office locations of the LSRs and
some manually selected locations. We try to assign
retailers to their nearest median without violating
a cluster capacity, which we determine by combin-
ing the driving and service times of the retailers
in the cluster. Retailers are assigned in decreasing
order of regret, the absolute value of the difference
between the retailer’s first and second nearest medi-
ans (Mulvey and Beck 1984). The retailer with the
largest regret value is assigned first to minimize the
potential penalty of inappropriate assignment.
When the assignments are completed, we build

10 routes using the initial route-construction method
and record the driving distances for servicing the
retailers in each cluster. We repeat this procedure
using new medians, which minimize the sum of dis-
tances between them and all other cluster members,
to see whether clusters based on new medians can
decrease the LSRs’ total driving distances. We con-
tinue the iteration until there is either no change in
the median set or no saving in the driving distance.
Next, we try to improve the solution by transfer-

ring and exchanging retailers among clusters. At this
stage, we try to improve the total driving distances
and balance the workload among the LSRs. We com-
plete the retailer-assignment procedure after making
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all feasible transfers and exchanges. We obtain the
final LSR routes by applying the route-improvement
algorithms to each cluster independently.

Conclusion and Future Direction
As a result of our project, the Missouri lottery
saves costs by improving its LSR operations. Bal-
anced scheduling and efficient routing of the LSRs
keep costs down and morale up. Furthermore, they
improve customer service and satisfaction, both of
which contribute to increased lottery ticket sales.
Although we cannot measure the effect exactly, we
believe that the implementation of our project has
increased ticket sales. The Missouri lottery’s revenue
is growing steadily: the profit during fiscal year 2004
was $230.3 million, a 19 percent increase from the
previous year’s $193.3 million (Columbia Daily Tribune
2004). Although larger Powerball jackpots and the
introduction of new games are the main causes of
the increased revenue, the innovations and improved
customer service achieved by the Missouri lottery
together with the university research team have also
presumably contributed to this increase.
The new system developed through this project

also provides noneconomic benefits. It can update
the routes quickly when current retailers leave or
move, and when new ones arrive. The sales staff
takes less time to reallocate retailers, perform updates,
and monitor routes than it did in the past. Also, this
computer-based system takes more factors into con-
sideration and it handles complex scheduling policies
that the former system could not. The managers can
now confidently plan LSR scheduling and routing.
The optimization engine enables them to tackle the
toughest schedules and gives them the confidence to
convince others. The Missouri lottery, together with
the researchers, plans to develop graphical user inter-
faces for the automated scheduling and routing sys-
tem, which will allow its managers to use the system
independently.
Thanks to the success of this project, the Missouri

lottery is considering the development of further
advanced LSR scheduling and routing models. Specif-
ically, we plan to stratify retailers into groups and
assign each group a different visitation frequency,
ranging from once a month to several times a week.

This reassignment will increase service quality to the
most important ticket retailers without increasing the
LSRs’ overall workloads. In stratifying retailers, we
will have to change some retailers’ assignments to the
LSRs, thereby making the scheduling and routing pol-
icy even more efficient.
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Larry P. Jansen, Executive Director, Missouri Lot-
tery, 1823 Southridge Drive, PO Box 1603, Jefferson

City, Missouri 65102-1603, writes: “I am writing this
letter to verify Dr. Jang and his research team’s work
submitted to the journal Interfaces.
“In 2002, we decided to develop more efficient

scheduling and routing strategies for our sales rep-
resentatives, who have a huge impact on our sales
growth by providing best quality customer service to
lottery ticket retailers. We formed a project commit-
tee and contacted Dr. Jang and the university research
team to undertake a project that would eventually
provide efficient solutions to our scheduling and rout-
ing problems.
“The project was a huge success. Efficient sched-

ules and routes were developed, the implementation
was successfully carried out, and the estimated cost
saving was realized. The outcome of the project pro-
vided not only more efficient routes, but also more
balanced routes. They decreased overtime days and
satisfied more visitation constraints we had.
“In short, we saw improvement in operation cost,

route flexibility, employee morale, decreased time,
and customer satisfaction. Thanks to success of this
project, we are currently working with Dr. Jang on
another project to develop further advanced schedul-
ing and routing models for our sales representatives.”


