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Network Models

Many important optimization problems can best be analyzed by means of a graphical or network
representation. In this chapter, we consider four specific network models—shortest-path prob-
lems, maximum-flow problems, CPM-PERT project-scheduling models, and minimum-spanning
tree problems—for which efficient solution procedures exist. We also discuss minimum-cost net-
work flow problems (MCNFPs), of which transportation, assignment, transshipment, shortest-
path, and maximum-flow problems and the CPM project-scheduling models are all special cases.
Finally, we discuss a generalization of the transportation simplex, the network simplex, which can
be used to solve MCNFPs. We begin the chapter with some basic terms used to describe
graphs and networks.

8.1

Basic Definitions

A graph, or network, is defined by two sets of symbols: nodes and arcs. First, we define
a set (call it V) of points, or vertices. The vertices of a graph or network are also called
nodes.

We also define a set of arcs A.

DEFINITION ®m An arc consists of an ordered pair of vertices and represents a possible direction

DEFINITION ®

of motion that may occur between vertices. m

For our purposes, if a network contains an arc ( j, k), then motion is possible from node
j to node k. Suppose nodes 1, 2, 3, and 4 of Figure 1 represent cities, and each arc rep-
resents a (one-way) road linking two cities. For this network, V = {1, 2, 3, 4} and A =
{(1, 2), (2, 3), (3, 4), (4, 3), (4, 1)}. For the arc (], k), node j is the initial node, and node
k is the terminal node. The arc (}j, k) is said to go from node j to node k. Thus, the arc
(2, 3) has initial node 2 and terminal node 3, and it goes from node 2 to node 3. The arc
(2, 3) may be thought of as a (one-way) road on which we may travel from city 2 to city
3. In Figure 1, the arcs show that travel is allowed from city 3 to city 4, and from city 4
to city 3, but that travel between the other cities may be one way only.

Later, we often discuss a group or collection of arcs. The following definitions are con-
venient ways to describe certain groups or collections of arcs.

A sequence of arcs such that every arc has exactly one vertex in common with
the previous arc is called a chain. =
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FIGURE 1
Example of a Network
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A path is a chain in which the terminal node of each arc is identical to the initial
node of the next arc. =

For example, in Figure 1, (1, 2)—(2, 3)—(4, 3) is a chain but not a path; (1, 2)—(2, 3)-
(3, 4) is a chain and a path. The path (1, 2)—(2, 3)—(3, 4) represents a way to travel from
node 1 to node 4.

8.2

EXAMPLE 1

Shortest-Path Problems

In this section, we assume that each arc in the network has a length associated with it.
Suppose we start at a particular node (say, node 1). The problem of finding the shortest
path (path of minimum length) from node 1 to any other node in the network is called a
shortest-path problem. Examples 1 and 2 are shortest-path problems.

Shortest Path

FIGURE 2
Network for Powerco

414

Let us consider the Powerco example (Figure 2). Suppose that when power is sent from
plant 1 (node 1) to city 1 (node 6), it must pass through relay substations (nodes 2-5).
For any pair of nodes between which power can be transported, Figure 2 gives the dis-
tance (in miles) between the nodes. Thus, substations 2 and 4 are 3 miles apart, and power
cannot be sent between substations 4 and 5. Powerco wants the power sent from plant 1
to city 1 to travel the minimum possible distance, so it must find the shortest path in Fig-
ure 2 that joins node 1 to node 6.

If the cost of shipping power were proportional to the distance the power travels, then
knowing the shortest path between plant 1 and city 1 in Figure 2 (and the shortest path
between plant i and city j in similar diagrams) would be necessary to determine the ship-
ping costs for the transportation version of the Powerco problem discussed in Chapter 7.

3
2
4
2 .
Plant 1 @ City 1
3 2
: 3
Substations
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EXAMPLE 2 Equipment Replacement

Solution

| have just purchased (at time 0) a new car for $12,000. The cost of maintaining a car dur-
ing a year depends on its age at the beginning of the year, as given in Table 1. To avoid
the high maintenance costs associated with an older car, I may trade in my car and pur-
chase a new car. The price | receive on a trade-in depends on the age of the car at the
time of trade-in (see Table 2). To simplify the computations, we assume that at any time,
it costs $12,000 to purchase a new car. My goal is to minimize the net cost (purchasing
costs + maintenance costs — money received in trade-ins) incurred during the next five
years. Formulate this problem as a shortest-path problem.

Our network will have six nodes (1, 2, 3, 4, 5, and 6). Node i is the beginning of year i.
For i < j, an arc (i, j) corresponds to purchasing a new car at the beginning of year i and
keeping it until the beginning of year j. The length of arc (i, j) (call it c;) is the total net
cost incurred in owning and operating a car from the beginning of year i to the beginning
of year j if a new car is purchased at the beginning of year i and this car is traded in for
a new car at the beginning of year j. Thus,

cij = maintenance cost incurred during years i, i+ 1,...,j— 1
+ cost of purchasing car at beginning of year i
— trade-in value received at beginning of year j

Applying this formula to the information in the problem yields (all costs are in thousands)

Co=2+12-7=7 Co=2+4+5+9+12+12-0=44
013:2+4+12_6:12 C23:2+12_7:7
Cu=2+4+5+12-2=21 Cu=2+4+12—6=12

C15:2+4+5+9+12_1:31 C25:2+4+5+12_2:21

TABLE 1
Car Maintenance Costs

Annual
Age of Car Maintenance
(Vears) Cost ($)
0 2,000
1 4,000
2 5,000
3 9,000
4 12,000
TABLE 2
Car Trade-in Prices
Age of Car
(Vears) Trade-in Price
1 7,000
2 6,000
3 2,000
4 1,000
5 0

8.2 Shortest-Path Problems 415
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FIGURE 3

Network for Minimizing

Car Costs

Cs=2+4+5+9+12—-1=31 Cp=2+12-7=7
Cau=2+12-7=7 Cls=2+4+12—6=12
Cis=2+4+12—6=12 Cs=2+12-7=7
Cas=2+4+5+12-2=21

We now see that the length of any path from node 1 to node 6 is the net cost incurred
during the next five years corresponding to a particular trade-in strategy. For example,
suppose | trade in the car at the beginning of year 3 and next trade in the car at the end
of year 5 (the beginning of year 6). This strategy corresponds to the path 1-3-6 in Fig-
ure 3. The length of this path (ci3 + C3g) is the total net cost incurred during the next five
years if | trade in the car at the beginning of year 3 and at the beginning of year 6. Thus,
the length of the shortest path from node 1 to node 6 in Figure 3 is the minimum net cost
that can be incurred in operating a car during the next five years.

416

Dijkstra’s Algorithm

Assuming that all arc lengths are nonnegative, the following method, known as Dijkstra’s
algorithm, can be used to find the shortest path from a node (say, node 1) to all other
nodes. To begin, we label node 1 with a permanent label of 0. Then we label each node i
that is connected to node 1 by a single arc with a “temporary” label equal to the length
of the arc joining node 1 to node i. Each other node (except, of course, for node 1) will
have a temporary label of =. Choose the node with the smallest temporary label and make
this label permanent.

Now suppose that node i has just become the (k + 1)th node to be given a permanent
label. Then node i is the kth closest node to node 1. At this point, the temporary label of
any node (say, node i") is the length of the shortest path from node 1 to node i’ that passes
only through nodes contained in the k — 1 closest nodes to node 1. For each node j that
now has a temporary label and is connected to node i by an arc, we replace node j’s tem-
porary label with

min node j’s current temporary label
node i’s permanent label + length of arc (i, j)

(Here, min{a, b} is the smaller of a and b.) The new temporary label for node j is the
length of the shortest path from node 1 to node j that passes only through nodes contained
in the k closest nodes to node 1. We now make the smallest temporary label a permanent
label. The node with this new permanent label is the (k + 1)th closest node to node 1.
Continue this process until all nodes have a permanent label. To find the shortest path
from node 1 to node j, work backward from node j by finding nodes having labels dif-

charTER 8 Network Models

o



1091.ch08 5/13/03 1:22 PM Page 417 $

fering by exactly the length of the connecting arc. Of course, if we want the shortest path
from node 1 to node j, we can stop the labeling process as soon as node j receives a per-
manent label.

To illustrate Dijkstra’s algorithm, we find the shortest path from node 1 to node 6 in
Figure 2. We begin with the following labels (a * represents a permanent label, and the
ith number is the label of the node i): [0* 4 3 o o oo]. Node 3 now has the small-
est temporary label. We therefore make node 3’s label permanent and obtain the follow-
ing labels:

[0* 4 3* = o o

We now know that node 3 is the closest node to node 1. We compute new temporary la-
bels for all nodes that are connected to node 3 by a single arc. In Figure 2 that is node 5.

New node 5 temporary label = min{e, 3 + 3} = 6

Node 2 now has the smallest temporary label; we now make node 2’s label permanent.
We now know that node 2 is the second closest node to node 1. Our new set of labels is

[0* 4% 3* « 6 o]

Because nodes 4 and 5 are connected to the newly permanently labeled node 2, we must
change the temporary labels of nodes 4 and 5. Node 4’ new temporary label is min {o°,
4 + 3} = 7 and node 5’s new temporary label is min {6, 4 + 2} = 6. Node 5 now has
the smallest temporary label, so we make node 5’s label permanent. We now know that
node 5 is the third closest node to node 1. Our new labels are

[0x 4% 3% 7 6% o]

Only node 6 is connected to node 5, so node 6% temporary label will change to min
{, 6 + 2} = 8. Node 4 now has the smallest temporary label, so we make node 4 la-
bel permanent. We now know that node 4 is the fourth closest node to node 1. Our new
labels are

[0x 4x 3% 7% 6* g

Because node 6 is connected to the newly permanently labeled node 4, we must change
node 6°s temporary label to min {8, 7 + 2} = 8. We can now make node 6’s label per-
manent. Our final set of labels is [0* 4* 3* 7* 6* 8*]. We can now work back-
ward and find the shortest path from node 1 to node 6. The difference between node 6%
and node 5’ permanent labels is 2 = length of arc (5, 6), so we go back to node 5. The
difference between node 5% and node 2’ permanent labels is 2 = length of arc (2, 5), so
we may go back to node 2. Then, of course, we must go back to node 1. Thus, 1-2-5-6
is a shortest path (of length 8) from node 1 to node 6. Observe that when we were at node
5, we could also have worked backward to node 3 and obtained the shortest path 1-3-5-6.

The Shortest-Path Problem as a Transshipment Problem

Finding the shortest path between node i and node j in a network may be viewed as a
transshipment problem. Simply try to minimize the cost of sending one unit from node i
to node j (with all other nodes in the network being transshipment points), where the cost
of sending one unit from node k to node k' is the length of arc (k, k') if such an arc ex-
ists and is M (a large positive number) if such an arc does not exist. As in Section 7.6,
the cost of shipping one unit from a node to itself is zero. Following the method described
in Section 7.6, this transshipment problem may be transformed into a balanced trans-
portation problem.

8.2 Shortest-Path Problems 417
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TABLE 3
Transshipment Representation
of Shortest-Path Problem and

Optimal Solution (1)

REMARK

Node 2 3 ':“de 5 6 Supply

L4 E [M [M [M

1 1 1
IC [M E [ 2 [M

2 1 1
[M IC [M E [M

3 1 1
[M [M IC [M [ 2

4 1 1
[M [M [M IC [ 2

5 1 1

Demand 1 1 1 1 1

To illustrate the preceding ideas, we formulate the balanced transportation problem as-
sociated with finding the shortest path from node 1 to node 6 in Figure 2. We want to send
one unit from node 1 to node 6. Node 1 is a supply point, node 6 is a demand point, and
nodes 2, 3, 4, and 5 will be transshipment points. Using s = 1, we obtain the balanced trans-
portation problem shown in Table 3. This transportation problem has two optimal solutions:

1 2=4+2+2=28,X1, = X5 = Xsg = Xzz = Xa4 = 1 (all other variables equal 0).
This solution corresponds to the path 1-2-5-6.

2 7=3+3+2=28,X13=2Xzs=Xsg = Xoo» = Xqqa = 1 (all other variables equal 0).
This solution corresponds to the path 1-3-5-6.

After formulating a shortest-path problem as a transshipment problem, the problem may be solved
easily by using LINGO or a spreadsheet optimizer. See Section 7.1 for details.

PROBLEMS

Group A

1 Find the shortest path from node 1 to node 6 in Figure 3. FIGURE 5
2 Find the shortest path from node 1 to node 5 in Figure 4. Network for Problem 4

3 Formulate Problem 2 as a transshipment problem.

4 Use Dijkstra’s algorithm to find the shortest path from 2 1
node 1 to node 4 in Figure 5. Why does Dijkstra’s algorithm
fail to obtain the correct answer? -2 @

FIGURE 4
Network for Problem 2
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12 ,@ 5 Suppose it costs $10,000 to purchase a new car. The

determine a replacement policy that minimizes the net costs
of owning and operating a car for the next six years.

annual operating cost and resale value of a used car are
Q)W( shown in Table 4. Assuming that one now has a new car,
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TABLE 4

Age of Car Resale Operating
(Vears) Value (S) Cost ($)

1 7,000 300 (year 1)
2 6,000 500 (year 2)
3 4,000 800 (year 3)
4 3,000 1,200 (year 4)
5 2,000 1,600 (year 5)
6 1,000 2,200 (year 6)

6 It costs $40 to buy a telephone from the department
store. Assume that | can keep a telephone for at most five
years and that the estimated maintenance cost each year of
operation is as follows: year 1, $20; year 2, $30; year 3,
$40; year 4, $60; year 5, $70. | have just purchased a new
telephone. Assuming that a telephone has no salvage value,
determine how to minimize the total cost of purchasing and
operating a telephone for the next six years.

7 At the beginning of year 1, a new machine must be
purchased. The cost of maintaining a machine i years old is
given in Table 5.

The cost of purchasing a machine at the beginning of
each year is given in Table 6.

There is no trade-in value when a machine is replaced.
Your goal is to minimize the total cost (purchase plus
maintenance) of having a machine for five years. Determine
the years in which a new machine should be purchased.

Group B

8" A library must build shelving to shelve 200 4-inch high
books, 100 8-inch high books, and 80 12-inch high books.

TABLE 5

Age at Beginning Maintenance Cost
of Year for Next Vear ($)
0 38,000

1 50,000

2 97,000

3 182,000

4 304,000

"Based on Ravindran (1971).

—p—

TABLE 6

Year Purchase Cost ($)
1 170,000

2 190,000

3 210,000

4 250,000

5 300,000

Each book is 0.5 inch thick. The library has several ways to
store the books. For example, an 8-inch high shelf may be
built to store all books of height less than or equal to 8
inches, and a 12-inch high shelf may be built for the 12-inch
books. Alternatively, a 12-inch high shelf might be built to
store all books. The library believes it costs $2,300 to build
a shelf and that a cost of $5 per square inch is incurred for
book storage. (Assume that the area required to store a book
is given by height of storage area times book’s thickness.)

Formulate and solve a shortest-path problem that could
be used to help the library determine how to shelve the
books at minimum cost. (Hint: Have nodes 0, 4, 8, and 12,
with c;; being the total cost of shelving all books of height
> iand = j on a single shelf.)

9 A company sells seven types of boxes, ranging in volume
from 17 to 33 cubic feet. The demand and size of each box
is given in Table 7. The variable cost (in dollars) of producing
each box is equal to the box’s volume. A fixed cost of $1,000
is incurred to produce any of a particular box. If the company
desires, demand for a box may be satisfied by a box of
larger size. Formulate and solve a shortest-path problem
whose solution will minimize the cost of meeting the
demand for boxes.

10 Explain how by solving a single transshipment problem
you can find the shortest path from node 1 in a network to
each other node in the network.

TABLE 7
Box
1 2 3 4 5 6 7
Size 33 30 26 24 19 18 17

Demand 400 300 500 700 200 400 200

8.3 Maximum-Flow Problems

Many situations can be modeled by a network in which the arcs may be thought of as hav-
ing a capacity that limits the quantity of a product that may be shipped through the arc.
In these situations, it is often desired to transport the maximum amount of flow from a
starting point (called the source) to a terminal point (called the sink). Such problems are

8.3 Maximum-Flow Problems 419
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called maximum-flow problems. Several specialized algorithms exist to solve maximum-
flow problems. In this section, we begin by showing how linear programming can be used
to solve a maximum-flow problem. Then we discuss the Ford—Fulkerson (1962) method
for solving maximum-flow problems.

LP Solution of Maximum-Flow Problems

cxamPLE 3 Maximum Flow

2)2 2)3 2)2
Network for Sunco 0il (50) @ @ @L»
3

420

Solution

FIGURE 6

Sunco Oil wants to ship the maximum possible amount of oil (per hour) via pipeline from
node so to node si in Figure 6. On its way from node so to node si, oil must pass through
some or all of stations 1, 2, and 3. The various arcs represent pipelines of different di-
ameters. The maximum number of barrels of oil (millions of barrels per hour) that can be
pumped through each arc is shown in Table 8. Each number is called an arc capacity.
Formulate an LP that can be used to determine the maximum number of barrels of oil per
hour that can be sent from so to si.

Node so is called the source node because oil flows out of it but no oil flows into it. Anal-
ogously, node si is called the sink node because oil flows into it and no oil flows out of
it. For reasons that will soon become clear, we have added an artificial arc ap from the
sink to the source. The flow through aq is not actually oil, hence the term artificial arc.

To formulate an LP that will yield the maximum flow from node so to si, we observe
that Sunco must determine how much oil (per hour) should be sent through arc (i, j). Thus,
we define

xij = millions of barrels of oil per hour that will pass through arc (i,j) of pipeline

As an example of a possible flow (termed a feasible flow), consider the flow indentified
by the numbers in parentheses in Figure 6.

Xs0,1 = 2, X33 = 0, X12 = 2, X3si — 0, Xosi = 2, Xsiso = 2, Xs0,2 = 0

)4 0)1

a9(2)

TABLE 8
Arc Gapacities for
Sunco 0il

Arc Capacity

(so, 1) 2
(so, 2)
12
1.3
(3, si)
(2, si)

N P B W w
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For a flow to be feasible, it must have two characteristics:
0 = flow through each arc = arc capacity m
and
Flow into node i = flow out of node i @

We assume that no oil gets lost while being pumped through the network, so at each
node, a feasible flow must satify (2), the conservation-of-flow constraint. The introduction
of the artificial arc ag allows us to write the conservation-of-flow constraint for the source
and sink.

If we let xq be the flow through the artificial arc, then conservation of flow implies that
Xo = total amount of oil entering the sink. Thus, Sunco’s goal is to maximize X, subject
to (1) and (2):

max z = Xg
s.t. Xso1 = 2 (Arc capacity constraints)
Xso2 = 3
X12 =3
Xosi = 2
X13 =4
Xzsi =1
Xo = Xso1 T Xso2 (Node so flow constraint)
Xso.1 = X12 + X13 (Node 1 flow constraint)
Xs0,2 T X12 = Xoi (Node 2 flow constraint)
X13 = Xasi (Node 3 flow constraint)
X3si T X25i = Xo (Node si flow constraint)
Xij =0

One optimal solution to this LP iSz = 3, Xs01 = 2, X13 = 1, X132 = 1, X502 = 1, Xz =
1, X25i = 2, Xo = 3. Thus, the maximum possible flow of oil from node so to si is 3 mil-
lion barrels per hour, with 1 million barrels each sent via the following paths: so—1-2-si,
s0—1-3-si, and so—2-si.

The linear programming formulation of maximum-flow problems is a special case of
the minimum-cost network flow problem (MCNFP) discussed in Section 8.5. A general-
ization of the transportation simplex (known as the network simplex) can be used to solve
MCNFPs.

Before discussing the Ford—Fulkerson method for solving maximum-flow problems,
we give two examples for situations in which a maximum-flow problem might arise.

EXAMPLE 4 Airline Maximum-Flow

Fly-by-Night Airlines must determine how many connecting flights daily can be arranged
between Juneau, Alaska, and Dallas, Texas. Connecting flights must stop in Seattle and
then stop in Los Angeles or Denver. Because of limited landing space, Fly-by-Night is
limited to making the number of daily flights between pairs of cities shown in Table 9.
Set up a maximum-flow problem whose solution will tell the airline how to maximize the
number of connecting flights daily from Juneau to Dallas.

8.3 Maximum-Flow Problems 421
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FIGURE 7

Network for Fly-by-

Night Airlines

Solution

TABLE 9
Arc Capacities for Fly-by-Night Airlines

Maximum Number

Cities of Daily Flights
Juneau-Seattle (J, S) 3
Seattle-L.A. (S, L) 2
Seattle-Denver (S, De) 3
L.A.-Dallas (L, D) 1
Denver-Dallas (De, D) 2
Los Angeles

2 l

The appropriate network is given in Figure 7. Here the capacity of arc (i, j) is the maxi-
mum number of daily flights between city i and city j. The optimal solution to this max-
imum flow problem is z = Xg = 3, X35 = 3, Xs. = 1, Xspe = 2, XLp = 1, Xpep = 2.
Thus, Fly-by-Night can send three flights daily connecting Juneau and Dallas. One flight
connects via Juneau-Seattle-L.A.-Dallas, and two flights connect via
Juneau—Seattle-Denver—Dallas.

422

EXAMPLE 5

Solution

Matchmaking

Five male and five female entertainers are at a dance. The goal of the matchmaker is to
match each woman with a man in a way that maximizes the number of people who are
matched with compatible mates. Table 10 describes the compatibility of the entertainers.
Draw a network that makes it possible to represent the problem of maximizing the num-
ber of compatible pairings as a maximum-flow problem.

Figure 8 is the appropriate network. In Figure 8, there is an arc with capacity 1 joining
the source to each man, an arc with capacity 1 joining each pair of compatible mates, and
an arc with capacity 1 joining each woman to the sink. The maximum flow in this net-
work is the number of compatible couples that can be created by the matchmaker. For ex-

TABLE 10
Gompatibilities for Matching

Loni Meryl Katharine Linda Victoria

Anderson Streep Hepburn Evans Principal
Kevin Costner — C — — —
Burt Reynolds C — — — —
Tom Selleck C C — — —
Michael Jackson C C — — C
Tom Cruise — — C C C

Note: C indicates compatibility.

charTER 8 Network Models
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FIGURE 8

Network for
Matchmaker

O

ample, if the matchmaker pairs KC and MS, BR and LA, MJ and VP, and TC and KH, a
flow of 4 from source to sink would be obtained. (This turns out to be a maximum flow
for the network.)

To see why our network representation correctly models the matchmaker’s problem,
note that because the arc joining each woman to the sink has a capacity of 1, conserva-
tion of flow ensures that each woman will be matched with at most one man. Similarly,
because each arc from the source to a man has a capacity of 1, each man can be paired
with at most one woman. Because arcs do not exist between noncompatible mates, we can
be sure that a flow of k units from source to sink represents an assignment of men to
women in which k compatible couples are created.

Maxflow.Ing

Solving Maximum-Flow Problems with LINGO

The maximum flow in a network can be found using LINDO, but LINGO greatly lessens
the effort needed to communicate the necessary information to the computer. The fol-
lowing LINGO program (in the file Maxflow.Ing) can be used to find the maximum flow
from source to sink in Figure 6.
MODEL :
1]SETS:
2]NODES/1. .5/;
3]JARCS(NODES,NODES)/1,2 1,3 2,3 2,4 3,5 4,5 5,1/
47 :CAP,FLOW;
5]ENDSETS
6]MAX=FLOW (5,1);
71@FOR(ARCS(1,J) :FLOW(I ,J)<CAP(1,J));
8]@FOR(NODES (1) :@SUM(ARCS(J, 1) zFLOW(J, 1))
9]1=@SUM(ARCS (I ,J) :FLOW(1,J)));
10]DATA:
11]CAP=2,3,3,4,2,1,1000;
12]ENDDATA
END

If some nodes are identified by numbers, then LINGO will not allow you to identify
other nodes with names involving letters. Thus, we have identified node 1 in line 2 with
node so in Figure 6 and node 5 in line 2 with node si. Also nodes 1, 2, and 3 in Figure 6
correspond to nodes 2, 3, and 4, respectively, in line 2 of our LINGO program. Thus, line
2 defines the nodes of the flow network. In line 3, we define the arcs of the network by
listing them (separated by spaces). For example, 1, 2 represents the arc from the source to
node 1 in Figure 6 and 5,1 is the artificial arc. In line 4, we indicate that an arc capacity
and a flow are associated with each arc. Line 5 ends the definition of the relevant sets.

In line 6, we indicate that our objective is to maximize the flow through the artificial
arc (this equals the flow into the sink). Line 7 specifies the arc capacity constraints; for
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FIGURE 9

lllustration of / and
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R arcs

each arc, the flow through the arc cannot exceed the arc’s capacity. Lines 8 and 9 create
the conservation of flow constraints. For each node I, they ensure that the flow into node
I equals the flow out of node I.

Line 10 begins the DATA section. In line 11, we input the arc capacities. Note that we
have given the artificial arc a large capacity of 1,000. Line 12 ends the DATA section and the
END statement ends the program. Typing GO yields the solution, a maximum flow of 3 pre-
viously described. The values of the variable FLOW(I,J) give the flow through each arc.

Note that this program can be used to find the maximum flow in any network. Begin
by listing the network’s nodes in line 2. Then list the network’s arcs in line 3. Finally, list
the capacity of each arc in the network in line 11, and you are ready to find the maximum
flow in the network!

The Ford-Fulkerson Method
for Solving Maximum-Flow Problems

We assume that a feasible flow has been found (letting the flow in each arc equal zero
gives a feasible flow), and we turn our attention to the following important questions:

Question 1 Given a feasible flow, how can we tell if it is an optimal flow (that is, maxi-
mizes Xo)?

Question 2 If a feasible flow is nonoptimal, how can we modify the flow to obtain a new
feasible flow that has a larger flow from the source to the sink?

First, we answer question 2. We determine which of the following properties is pos-
sessed by each arc in the network:

Property 1 The flow through arc (i, j) is below the capacity of arc (i, j). In this case, the
flow through arc (i, j) can be increased. For this reason, we let | represent the set of arcs
with this property.

Property 2 The flow in arc (i, j) is positive. In this case, the flow through arc (i, j) can be
reduced. For this reason, we let R be the set of arcs with this property.

As an illustration of the definitions of I and R, consider the network in Figure 9. The arcs
in this figure may be classified as follows: (so, 1) isin I and R; (so, 2) isin I; (1, si) is in
R; (2,si)isinI;and (2, 1) isin I.

We can now describe the Ford—Fulkerson labeling procedure used to modify a feasi-
ble flow in an effort to increase the flow from the source to the sink.

Step 1 Label the source.

Step 2 Label nodes and arcs (except for arc ag) according to the following rules: (1) If
node x is labeled, then node y is unlabeled and arc (X, y) is a member of I; then label node
y and arc (X, y). In this case, arc (x, y) is called a forward arc. (2) If node y is unlabeled,
node x is labeled and arc (y, x) is a member of R; label node y and arc (y, x). In this case,
(y, x) is called a backward arc.

IR R
21) 1(1)

03
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FIGURE 10
lllustration of Case 1 of
Labeling Method

FIGURE 11
Improved Flow from
Source to Sink: Case 1

Step 3 Continue this labeling process until the sink has been labeled or until no more
vertices can be labeled.

If the labeling process results in the sink being labeled, then there will be a chain of
labeled arcs (call it C) leading from the source to the sink. By adjusting the flow of the
arcs in C, we can maintain a feasible flow and increase the total flow from source to sink.
To see this, observe that C must consist of one of the following:

case 1 C consists entirely of forward arcs.
case 2 C contains both forward and backward arcs.”

In each case, we can obtain a new feasible flow that has a larger flow from source to sink
than the current feasible flow. In Case 1, the chain C consists entirely of forward arcs. For
each forward arc in C, let i(x, y) be the amount by which the flow in arc (x, y) can be in-
creased without violating the capacity constraint for arc (x, y) . Let
k= min i(x,y)
(x, y)ec

Then k > 0. To create a new flow, increase the flow through each arc in C by k units. No
capacity constraints are violated, and conservation of flow is still maintained. Thus, the
new flow is feasible, and the new feasible flow will transport k more units from source to
sink than does the current feasible flow.

We use Figure 10 to illustrate Case 1. Currently, 2 units are being transported from
source to sink. The labeling procedure results in the sink being labeled by the chain C =
(so,1) — (1,2) — (2,si). Eacharcisinl,andi(so, 1) =5—-2=3;i(1,2) =3 -2 =
1; and i(2, si) = 4 — 2 = 2. Hence, k = min(3, 1, 2) = 1. Thus, an improved feasible
flow can be obtained by increasing the flow on each arc in C by 1 unit. The resulting flow
transports 3 units from source to sink (see Figure 11).

In Case 2, the chain C leading from the source to the sink contains both backward and
forward arcs. For each backward arc in C, let r(x, y) be the amount by which the flow
through arc (x, y) can be reduced. Also define

ku = R T0) and e = i)

203)
o A

@

Flow from source to sink = 2
Chain is (so, 1) - (1, 2) - (2, si)

33)
a6 @’—‘N

©

Flow from source to sink = 3

"Because we exclude arc a, from the labeling procedure, no chain made entirely of backward arcs can lead
from source to sink.
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Of course, both k; and k, and min (kqy,k5) are > 0. To increase the flow from source to
sink (while maintaining a feasible flow), decrease the flow in all of C’s backward arcs by
min (ky, k2) and increase the flow in all of C’s forward arcs by min(ky, k). This will main-
tain conservation of flow and ensure that no arc capacity constraints are violated. Because
the last arc in C is a forward arc leading into the sink, we have found a new feasible flow
and have increased the total flow into the sink by min(ky, k»). We now adjust the flow in
the arc ap to maintain conservation of flow. To illustrate Case 2, suppose we have found
the feasible flow in Figure 12. For this flow, (so, 1) €R; (s0,2) € I; (1,3) € I; (1, 2) €
I and R; (2, si) € R; and (3, si) € I.

We begin by labeling arc (so, 2) and node 2 (thus (so, 2) is a forward arc). Then we
label arc (1, 2) and node 1. Arc (1, 2) is a backward arc, because node 1 was unlabeled
before we labeled arc (1, 2), and arc (1, 2) is in R. Nodes so, 1, and 2 are labeled, so we
can label arc (1, 3) and node 3. [Arc (1, 3) is a forward arc, because node 3 has not yet
been labeled.] Finally we label arc (3, si) and node si. Arc (3, si) is a forward arc, because
node si has not yet been labeled. We have now labeled the sink via the chain C = (so, 2) —
(1,2) — (1,3) — (3, si). With the exception of arc (1, 2), all arcs in the chain are forward
arcs. Because i(so, 2) = 3;i(1, 3) = 4;i(3, si) = 1; and r(1, 2) = 2, we have

i GFY) =2 and i i0y) =1
Thus, we can increase the flow on all forward arcs in C by 1 and decrease the flow in all
backward arcs by 1. The new result, pictured in Figure 13, has increased the flow from
source to sink by 1 unit (from 2 to 3). We accomplish this by diverting 1 unit that was
transported through the arc (1, 2) to the path 1-3-si. This enabled us to transport an ex-
tra unit from source to sink via the path so—2-si. Observe that the concept of a backward
arc was needed to find this improved flow.

If the sink cannot be labeled, then the current flow is optimal. The proof of this fact
relies on the concept of a cut for a network.

DEFINITION m Choose any set of nodes V' that contains the sink but does not contain the source.

FIGURE 12
lllustration of Case 2 of
Labeling Method

FIGURE 13
Improved Flow from
Source to Sink: Case 2
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Then the set of arcs (i, j) with i not in V' and j a member of V' is a cut for the
network. m

0)41 11

- (2R ; )3 QD (2R
O/ LR O
)31
(2

Flow from source to sink = 2
Chain is (so, 2) = (1, 2) - (1, 3) - (3, si)

4 M1

(2)2 L3 @2
@\w/@
03

O

Flow from source to sink = 3

charTER 8 Network Models

o



1091.ch08 12/15/06 10:31 AM Page 427 $

FIGURE 14
Example of a Cut

DEFINITION =

=) @

V’=11, si] yields cut
[(so, 1), (2, si)]

The capacity of a cut is the sum of the capacities of the arcs in the cut. m

In short, a cut is a set of arcs whose removal from the network makes it impossible to
travel from the source to the sink. A network may have many cuts. For example, in the
network in Figure 14, V' = {1, si} yields the cut containing the arcs (so, 1) and (2, si),
which has capacity 2 + 1 = 3. The set V' = {1, 2, si} yields the cut containing the arcs
(so, 1) and (so, 2), which has capacity 2 + 8 = 10.

Lemma 1 and Lemma 2 indicate the connection between cuts and maximum flows.

The flow from source to sink for any feasible flow is less than or equal to the ca-
pacity of any cut.

Proof Consider an arbitrary cut specified by a set of nodes V' that contains the sink
but does not contain the source. Let V be all other nodes in the network. Also let x;;
be the flow in arc (i, j) for any feasible flow and f be the flow from source to sink
for this feasible flow. Summing the flow balance equations (flow out of node i —
flow into node i = 0) over all nodes i in V, we find that the terms involving arcs
(i, j) having i and j both members of V will cancel, and we obtain

> Xy = D xg=f @

iev; ieVv’;

jev’ jev
Now the first sum in (3) equals the capacity of the cut. Each X;; is nonnegative, so
we see that f = capacity of the cut, which is the desired result.

Lemma 1 is analogous to the weak duality result discussed in Chapter 6. From Lemma
1, we see that the capacity of any cut is an upper bound for the maximum flow from source
to sink. Thus, if we can find a feasible flow and a cut for which the flow from source to sink
equals the capacity of the cut, then we have found the maximum flow from source to sink.

Suppose that we find a feasible flow and cannot label the sink. Let CUT be the cut cor-
responding to the set of unlabeled nodes.

LEMMA 2

If the sink cannot be labeled, then
Capacity of CUT = current flow from source to sink

Proof Let V' be the set of unlabeled nodes and V be the set of labeled nodes. Con-
sider an arc (i, j) such that i is in V and j is in V'. Then we know that x;; = capac-
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FIGURE 15

Network for Sunco Oil

428

(Increased Flow)

ity of arc (i, j) must hold; otherwise, we could label node j (via a forward arc) and
node j would not be in V’. Now consider an arc (i, j) such that i is in V' and j is in
V. Then x;; = 0 must hold; otherwise, we could label node i (via a backward arc)
and node i would not be in V'. Now (3) shows that the current flow must satisfy

Capacity of CUT = current flow from source to sink

which is the desired result.

From the remarks following Lemma 1, when the sink cannot be labeled, the maximum
flow from source to sink has been obtained.

Summary and lllustration of the Ford-Fulkerson Method

Step 1 Find a feasible flow (setting each arc’s flow to zero will do).

Step 2 Using the labeling procedure, try to label the sink. If the sink cannot be labeled, then
the current feasible flow is a maximum flow; if the sink is labeled, then go on to step 3.

Step 3 Using the method previously described, adjust the feasible flow and increase the
flow from the source to the sink. Return to step 2.

To illustrate the Ford—Fulkerson method, we find the maximum flow from source to
sink for Sunco Oil, Example 3 (see Figure 6). We begin by letting the flow in each arc
equal zero. We then try to label the sink—Ilabel the source, and then arc (so, 1) and node
1; then label arc (1, 2) and node 2; finally, label arc (2, si) and node si. Thus, C =
(so, 1)—(1, 2)-(2, si). Each arc in C is a forward arc, so we can increase the flow through
each arc in C by min (2, 3, 2) = 2 units. The resulting flow is pictured in Figure 15.

As we saw previously (Figure 12), we can label the sink by using the chain C =
(so, 2)—(1, 2)—(1, 3)—(3, si). We can increase the flow through the forward arcs (so, 2),
(1, 3), and (3, si) by 1 unit and decrease the flow through the backward arc (1, 2) by 1
unit. The resulting flow is pictured in Figure 16. It is now impossible to label the sink.
Any attempt to label the sink must begin by labeling arc (so, 2) and node 2; then we could
label arc (1, 2) and arc (1, 3). But there is no way to label the sink.

We can verify that the current flow is maximal by finding the capacity of the cut cor-
responding to the set of unlabeled vertices (in this case, si). The cut corresponding to si
is the set of arcs (2, si) and (3, si), with capacity 2 + 1 = 3. Thus, Lemma 1 implies that
any feasible flow can transport at most 3 units from source to sink. Our current flow trans-
ports 3 units from source to sink, so it must be an optimal flow.

Another example of the Ford—Fulkerson method is given in Figure 17. Note that with-
out the concept of a backward arc, we could not have obtained the maximum flow of 7

04 01

S

@

Flow from source to sink = 2
Label sink by (so, 2) - (1, 2) — (1, 3) — (3, si)
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(1)4 11

FIGURE 16 (2)2 03 ()2
Network for Sunco Oil @
(Optimal Flow) w3 5

Flow from source to sink = 3
Since sink cannot be labeled, this is an optimal flow

7 2
2
5
a Original network
FIGURE T7
Example of
Ford-Fulkerson Method
@7 (0)2
(2)2
(5)5

¢ Label sink by so -1 -2 -3 -si (adds 2 units
of flow using only forward arcs)

07 0)2

(0)2
()5

b Label sink by so — 3 —si (adds 3 units
of flow using only forward arcs)

®

(22
)5

d Label sink by so -2 — 1 —si (adds 2 units
of flow using backward arc (1, 2);

maximum flow of 7 has been obtained

units from source to sink. The minimum cut (with capacity 7, of course) corresponds to
nodes 1, 3, and si and consists of arcs (so, 1), (so, 3) and (2, 3).

PROBLEMS

Group A

1-3 Figures 18-20 show the networks for Problems 1-3.
Find the maximum flow from source to sink in each network.
Find a cut in the network whose capacity equals the

maximum flow in the network. Also, set up an LP that could
be used to determine the maximum flow in the network.

FIGURE 18
Network for Problem 1

8.3 Maximum-Flow Problems 429
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FIGURE 19 used to determine whether the packages can be loaded so
Network for Problem 2 that no truck carries two packages of the same type.

7 Four workers are available to perform jobs 1-4.
Unfortunately, three workers can do only certain jobs:
worker 1, only job 1; worker 2, only jobs 1 and 2; worker
3, only job 2; worker 4, any job. Draw the network for the
maximum-flow problem that can be used to determine
whether all jobs can be assigned to a suitable worker.

8 The Hatfields, Montagues, McCoys, and Capulets are
going on their annual family picnic. Four cars are available
to transport the families to the picnic. The cars can carry the
following number of people: car 1, four; car 2, three; car 3,
three; and car 4, four. There are four people in each family,
and no car can carry more than two people from any one

FIGURE 20 family. Formulate the problem of transporting the maximum

Nework for Problem 3 possible number of people to the picnic as a maximum-flow
problem.

4 1 9-10 For the networks in Figures 23 and 24, find the

maximum flow from source to sink. Also find a cut whose
capacity equals the maximum flow in the network.

Group B

11 Suppose a network contains a finite number of arcs and
the capacity of each arc is an integer. Explain why the
Ford—Fulkerson method will find the maximum flow in the
finite number of steps. Also show that the maximum flow
FIGURE 21 from source to sink will be an integer.

Network for Problem 4

12 Consider a network flow problem with several sources
and several sinks in which the goal is to maximize the total

z flow into the sinks. Show how such a problem can be
20 5 converted into a maximum-flow problem having only a
30 Py 15 O single source and a single sink.
SO 2 SI
\&J
10 14 19

FIGURE 23

6
4 6
FIGURE 22 GD\
Network for Problem 5 @ 4 2 1 @
6 2
4
7
=
3
: 8
4-5 For the networks in Figures 21 and 22, find the

maximum flow from source to sink. Also find a cut whose
capacity equals the maximum flow in the network.

FIGURE 24

6 Seven types of packages are to be delivered by five
trucks. There are three packages of each type, and the
capacities of the five trucks are 6, 4, 5, 4, and 3 packages,
respectively. Set up a maximum-flow problem that can be
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13 Suppose the total flow into a node of a network is
restricted to 10 units or less. How can we represent this
restriction via an arc capacity constraint? (This still allows
us to use the Ford—Fulkerson method to find the maximum
flow.)

14 Suppose as many as 300 cars per hour can travel
between any two of the cities 1, 2, 3, and 4. Set up a
maximum-flow problem that can be used to determine how
many cars can be sent in the next two hours from city 1 to
city 4. (Hint: Have portions of the network represent t = 0,
t=1,andt=2)

15 Fly-by-Night Airlines is considering flying three flights.
The revenue from each flight and the airports used by each
flight are shown in Table 11. When Fly-by-Night uses an
airport, the company must pay the following landing fees
(independent of the number of flights using the airport):
airport 1, $300; airport 2, $700; airport 3, $500. Thus, if
flights 1 and 3 are flown, a profit of 900 + 800 — 300 —
700 — 500 = $200 will be earned. Show that for the network
in Figure 25 (maximum profit) = (total revenue from all
flights) — (capacity of minimal cut). Explain how this result
can be used to help Fly-by-Night maximize profit (even if it

—p—

TABLE 11

Flight Revenue (8) Airport Used
1 900 1land 2
2 600 2

3 800 2and 3

to the sink, the nodes associated with the flights not in F, and
the nodes associated with the airports not used by F. Show
that (capacity of this cut) = (revenue from flights not in F)
+ (costs associated with airports used by F).)

16 During the next four months, a construction firm must
complete three projects. Project 1 must be completed within
three months and requires 8 months of labor. Project 2 must
be completed within four months and requires 10 months of
labor. Project 3 must be completed at the end of two months
and requires 12 months of labor. Each month, 8 workers are
available. During a given month, no more than 6 workers can
work on a single job. Formulate a maximum-flow problem
that could be used to determine whether all three projects can

has hundreds of possible flights). (Hint: Consider any set of
flights F (say, flights 1 and 3). Consider the cut corresponding

be completed on time. (Hint: If the maximum flow in the
network is 30, then all projects can be completed on time.)

FIGURE 25
Network for Problem 15

O\O\
<o/ o/

8.4 GPM and PERT

Network models can be used as an aid in scheduling large complex projects that consist
of many activities. If the duration of each activity is known with certainty, then the crit-
ical path method (CPM) can be used to determine the length of time required to com-
plete a project. CPM also can be used to determine how long each activity in the project
can be delayed without delaying the completion of the project. CPM was developed in the
late 1950s by researchers at DuPont and Sperry Rand.

If the duration of the activities is not known with certainty, the Program Evaluation
and Review Technique (PERT) can be used to estimate the probability that the project will
be completed by a given deadline. PERT was developed in the late 1950s by consultants
working on the development of the Polaris missile. CPM and PERT were given a major
share of the credit for the fact that the Polaris missile was operational two years ahead of
schedule.

CPM and PERT have been successfully used in many applications, including:

1 Scheduling construction projects such as office buildings, highways, and swimming
pools
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FIGURE 26
Activity A Must Be
Completed Before
Activity B Can Begin

FIGURE 27
Activities A and B Must
Be Gompleted Before
Activity C Can Begin

FIGURE 28

Activity A Must Be
Completed Before

Activities B and C
Can Begin

432
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2 Scheduling the movement of a 400-bed hospital from Portland, Oregon, to a suburban
location

3 Developing a countdown and “hold” procedure for the launching of space flights
Installing a new computer system
Designing and marketing a new product

Completing a corporate merger

N e g A

Building a ship

To apply CPM and PERT, we need a list of the activities that make up the project. The
project is considered to be completed when all the activities have been completed. For
each activity, there is a set of activities (called the predecessors of the activity) that must
be completed before the activity begins. A project network is used to represent the prece-
dence relationships between activities. In our discussion, activities will be represented by
directed arcs, and nodes will be used to represent the completion of a set of activities.
(For this reason, we often refer to the nodes in our project network as events.) This type
of project network is called an AOA (activity on arc) network.

To understand how an AOA network represents precedence relationships, suppose that
activity A is a predecessor of activity B. Each node in an AOA network represents the
completion of one or more activities. Thus, node 2 in Figure 26 represents the comple-
tion of activity A and the beginning of activity B. Suppose activities A and B must be
completed before activity C can begin. In Figure 27, node 3 represents the event that ac-
tivities A and B are completed. Figure 28 shows activity A as a predecessor of both ac-
tivities B and C.

Given a list of activities and predecessors, an AOA representation of a project (called
a project network or project diagram) can be constructed by using the following rules:

1 Node 1 represents the start of the project. An arc should lead from node 1 to repre-
sent each activity that has no predecessors.

"In an AON (activity on node) project network, the nodes of the network are used to represent activities. See
Wiest and Levy (1977) for details.
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A
FIGURE 29 GC:%
Violation of Rule 5 B
A A\ C
1 @
A
/
/
B /// Dummy arc
/
FIGURE 30
Use of Dummy Activity @

2 A node (called the finish node) representing the completion of the project should be
included in the network.

3 Number the nodes in the network so that the node representing the completion of an
activity always has a larger number than the node representing the beginning of an activ-
ity (there may be more than one numbering scheme that satisfies rule 3).

4 An activity should not be represented by more than one arc in the network.
5 Two nodes can be connected by at most one arc.

To avoid violating rules 4 and 5, it is sometimes necessary to utilize a dummy activity that
takes zero time. For example, suppose activities A and B are both predecessors of activity C
and can begin at the same time. In the absence of rule 5, we could represent this by Figure
29. However, because nodes 1 and 2 are connected by more than one arc, Figure 29 violates
rule 5. By using a dummy activity (indicated by a dotted arc), as in Figure 30, we may rep-
resent the fact that A and B are both predecessors of C. Figure 30 ensures that activity C can-
not begin until both A and B are completed, but it does not violate rule 5. Problem 10 at the
end of this section illustrates how dummy activities may be needed to avoid violating rule 4.
Example 6 illustrates a project network.

Drawing a Project Network

Widgetco is about to introduce a new product (product 3). One unit of product 3 is pro-
duced by assembling 1 unit of product 1 and 1 unit of product 2. Before production be-
gins on either product 1 or 2, raw materials must be purchased and workers must be
trained. Before products 1 and 2 can be assembled into product 3, the finished product 2
must be inspected. A list of activities and their predecessors and of the duration of each
activity is given in Table 12. Draw a project diagram for this project.

TABLE 12
Duration of Activities and Predecessor Relationships for Widgetco

Duration
Activity Predecessors (Days)
A = train workers — 6
B = purchase raw materials — 9
C = produce product 1 A B 8
D = produce product 2 A B 7
E = test product 2 D 10
F = assemble products 1 and 2 C E 12
8.4 (GPM and PERT 433
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FIGURE 31
Project Diagram for
Widgetco

Solution

A6

B9

Node 1 = starting node
Node 6 = finish node

Observe that although we list only C and E as predecessors of F, it is actually true that
activities A, B, and D must also be completed before F begins. C cannot begin until A
and B are completed, and E cannot begin until D is completed, however, so it is redun-
dant to state that A, B, and D are predecessors of F. Thus, in drawing the project network,
we need only be concerned with the immediate predecessors of each activity.

The AOA network for this project is given in Figure 31 (the number above each arc
represents activity duration in days). Node 1 is the beginning of the project, and node 6
is the finish node representing completion of the project. The dummy arc (2, 3) is needed
to ensure that rule 5 is not violated.

The two key building blocks in CPM are the concepts of early event time (ET) and late
event time (LT) for an event.

DEFINITION m The early event time for node i, represented by ET(i), is the earliest time at

FIGURE 32
Determination of ET(6)

434

which the event corresponding to node i can occur. m

The late event time for node i, represented by LT(i), is the latest time at which
the event corresponding to node i can occur without delaying the completion of
the project. m

Computation of Early Event Time

To find the early event time for each node in the project network, we begin by noting that
because node 1 represents the start of the project, ET(1) = 0. We then compute ET(2),
ET(3), and so on, stopping when ET(finish node) has been calculated. To illustrate how
ET(i) is calculated, suppose that for the segment of a project network in Figure 32, we
have already determined that ET(3) = 6, ET(4) = 8, and ET(5) = 10. To determine ET(6),
observe that the earliest time that node 6 can occur is when the activities corresponding
to arc (3, 6), (4, 6), and (5, 6) have all been completed.

®\

C ) 4
®/ .
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FIGURE 33
Computation of L T(4)

ET(3) + 8 = 14
ET(6) = max {ET(4) + 4 = 12
ET(5) + 3 =13

Thus, the earliest time that node 6 can occur is 14, and ET(6) = 14.

From this example, it is clear that computation of ET(i) requires (for j < i) knowledge
of one or more of the ET(j)’s. This explains why we begin by computing the predecessor
ETs. In general, if ET(1), ET(2), ..., ET(i — 1) have been determined, then we compute
ET(i) as follows:

Step 1 Find each prior event to node i that is connected by an arc to node i. These events
are the immediate predecessors of node i.

Step 2 To the ET for each immediate predecessor of the node i add the duration of the
activity connecting the immediate predecessor to node i.

Step 3 ET(i) equals the maximum of the sums computed in step 2.

We now compute the ET(i)’s for Example 6. We begin by observing that ET(1) = 0.
Node 1 is the only immediate predecessor of node 2, so ET(2) = ET(1) + 9 = 9. The
immediate predecessors of node 3 are nodes 1 and 2. Thus,

ET(1) +6 =6 _
ET(2) + 0 =9

Node 4’s only immediate predecessor is node 3. Thus, ET(4) = ET(3) + 7 = 16. Node
5’ immediate predecessors are nodes 3 and 4. Thus,

ET(3) + 8 =17 _
ET(4) + 10 = 26

Finally, node 5 is the only immediate predecessor of node 6. Thus, ET(6) = ET(5) + 12 =
38. Because node 6 represents the completion of the project, we see that the earliest time
that product 3 can be assembled is 38 days from now.

It can be shown that ET(i) is the length of the longest path in the project network from
node 1 to node i.

ET(3) = max{ 9

ET(5) = max{ 26

Computation of Late Event Time

To compute the LT(i)’s, we begin with the finish node and work backward (in descending
numerical order) until we determine LT(1). The project in Example 6 can be completed
in 38 days, so we know that LT(6) = 38. To illustrate how LT(i) is computed for nodes
other than the finish node, suppose we are working with a network (Figure 33) for which
we have already determined that LT(5) = 24, LT(6) = 26, and LT(7) = 28. In this situation,
how can we compute LT(4)? If the event corresponding to node 4 occurs after LT(5) — 3,
node 5 will occur after LT(5), and the completion of the project will be delayed.

"o

e
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Similarly, if node 4 occurs after LT(6) — 4 or if node 4 occurs after LT(7) — 5, the com-
pletion of the project will be delayed. Thus,

LT(5) — 3 = 21
LT(4) = min {LT(6) — 4 = 22 = 21
LT(7) — 5 = 23

In general, if LT(j) is known for j > i, we can find LT(i) as follows:

Step 1 Find each node that occurs after node i and is connected to node i by an arc. These
events are the immediate successors of node i.

Step 2 From the LT for each immediate successor to node i, subtract the duration of the
activity joining the successor the node i.

Step 3 LT(i) is the smallest of the differences determined in step 2.

We now compute the LT(i)’s for Example 6. Recall that LT(6) = 38. Because node 6
is the only immediate successor of node 5, LT(5) = LT(6) — 12 = 26. Node 4’s only im-
mediate successor is node 5. Thus, LT(4) = LT(5) — 10 = 16. Nodes 4 and 5 are imme-
diate successors of node 3. Thus,

LT4) —7=9

LT(5) — 8 = 18

Node 3 is the only immediate successor of node 2. Thus, LT(2) = LT(3) — 0 = 9. Fi-
nally, node 1 has nodes 2 and 3 as immediate successors. Thus,

LT(3) -6 =3

LT2) —9=0

Table 13 summarizes our computations for Example 6. If LT(i) = ET(i), any delay in the

occurrence of node i will delay the completion of the project. For example, because LT(4)
= ET(4), any delay in the occurrence of node 4 will delay the completion of the project.

LT(3) = min{

LT(1) = min {

Total Float

Before the project is begun, the duration of an activity is unknown, and the duration of
each activity used to construct the project network is just an estimate of the activity’s ac-
tual completion time. The concept of total float of an activity can be used as a measure
of how important it is to keep each activity’s duration from greatly exceeding our esti-
mate of its completion time.

TABLE 13

ET and LT for Widgetco

Node ET(i) LT(i)
1 0 0
2 9 9
3 9 9
4 16 16
5 26 26
6 38 38
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For an arbitrary arc representing activity (i, ), the total float, represented by
TF(, j), of the activity represented by (i, j) is the amount by which the starting
time of activity (i, j) could be delayed beyond its earliest possible starting time
without delaying the completion of the project (assuming no other activities are
delayed). m

Equivalently, the total float of an activity is the amount by which the duration of the
activity can be increased without delaying the completion of the project.

If we define t; to be the duration of activity (i, j), then TF(i, j) can easily be ex-
pressed in terms of LT(j) and ET(i). Activity (i, j) begins at node i. If the occurrence
of node i, or the duration of activity (i, j), is delayed by k time units, then activity (i, j)
will be completed at time ET(i) + k + tj;. Thus, the completion of the project will not
be delayed if

ET(i) + k + t; = LT(j) or k = LT(j) — ET(i) — t;
Therefore,
TRQ, J) = LT(J) — ET() — t;
For Example 6, the TF(i, j) are as follows:
Activity B: TF(1,2) = LT(2 —ET1) —9=0
Activity A: TF(1,3) = LT(3) — ET(1) — 6 =3
Activity D: TF3,4) =LT4) —ET8) —7=0
Activity C: TF(3,5) = LT(5) — ET(3) —8 =9
Activity E: TF(4,5) = LT(5) — ET(4) —10=0
Activity F: TF(5, 6) = LT(6) — ET(5) — 12 =0
Dummy activity: TF(2,3) = LT(3) — ET(2) —0=0

Finding a Critical Path

If an activity has a total float of zero, then any delay in the start of the activity (or the du-
ration of the activity) will delay the completion of the project. In fact, increasing the du-
ration of an activity by A days will increase the length of the project by A days. Such an
activity is critical to the completion of the project on time.

DEFINITION ®m Any activity with a total float of zero is a critical activity. =

A path from node 1 to the finish node that consists entirely of critical activities is
called a critical path. =

In Figure 31, activities B, D, E, F, and the dummy activity are critical activities and the
path 1-2-3-4-5-6 is the critical path (it is possible for a network to have more than one
critical path). A critical path in any project network is the longest path from the start node
to the finish node (see Problem 2 in Section 8.5).

Any delay in the duration of a critical activity will delay the completion of the project,
so it is advisable to monitor closely the completion of critical activities.
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Free Float

As we have seen, the total float of an activity can be used as a measure of the flexibility
in the duration of an activity. For example, activity A can take up to 3 days longer than
its scheduled duration of 6 days without delaying the completion of the project. Another
measure of the flexibility available in the duration of an activity is free float.

DEFINITION m The free float of the activity corresponding to arc (i, j), denoted by FF(i, j), is the

438

amount by which the starting time of the activity corresponding to arc (i, j) (or
the duration of the activity) can be delayed without delaying the start of any later
activity beyond its earliest possible starting time. m

Suppose the occurrence of node i, or the duration of activity (i, j), is delayed by k units.
Then the earliest that node j can occur is ET(i) + t; + k. Thus, if ET(i) + t; + k = ET(}j),
or k = ET(j) — ET(i) — t;;, then node j will not be delayed. If node j is not delayed, then
no other activities will be delayed beyond their earliest possible starting times. Therefore,

FF(i,j) = ET() — ET() — 4
For Example 6, the FF(i, j) are as follows:
Activity B:  FF(1,2)=9-0-9=0
Activity A: FF(1,3)=9-0-6=3
Activity D: FF(3,4) =16-9-7=0
Activity C: FF(3,5) =26 -9 —-8=9
Activity E: FF(4,5) =26 — 16 —10=10
Activity F: FF(5,6) =38 — 26 —12=10
For example, because the free float for activity C is 9 days, a delay in the start of activ-

ity C (or in the occurrence of node 3) or a delay in the duration of activity C of more than
9 days will delay the start of some later activity (in this case, activity F).

Using Linear Programming to Find a Critical Path

Although the previously described method for finding a critical path in a project network
is easily programmed on a computer, linear programming can also be used to determine
the length of the critical path. Define

X; = the time that the event corresponding to node j occurs

For each activity (i, j), we know that before node j occurs, node i must occur and activity
(i, J) must be completed. This implies that for each arc (i, j) in the project network, x; =
Xi + tj. Let F be the node that represents completion of the project. Our goal is to minimize
the time required to complete the project, so we use an objective function of z = xg — X;.

To illustrate how linear programming can be used to find the length of the critical path,
we apply the preceding approach to Example 6. The appropriate LP is

minz = Xg — X1

s.t. X3 =X, + 6 (Arc (1, 3) constraint)
Xo =X; + 9 (Arc (1, 2) constraint)
X5 = X3 + 8 (Arc (3, 5) constraint)
Xg =Xz + 7 (Arc (3, 4) constraint)
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X5 = X4 + 10 (Arc (4, 5) constraint)

Xe = X5 + 12 (Arc (5, 6) constraint)

X3 = Xy (Arc (2, 3) constraint)
All variables urs

An optimal solution to this LPisz = 38,%x; = 0, X, = 9, X3 = 9, X4 = 16, x5 = 26, and
Xe = 38. This indicates that the project can be completed in 38 days.

This LP has many alternative optimal solutions. In general, the value of x; in any op-
timal solution may assume any value between ET(i) and LT(i). All optimal solutions to
this LP, however, will indicate that the length of any critical path is 38 days.

A critical path for this project network consists of a path from the start of the project
to the finish in which each arc in the path corresponds to a constraint having a dual price
of —1. From the LINDO output in Figure 34, we find, as before, that 1-2-3-4-5-6 is a
critical path. For each constraint with a dual price of —1, increasing the duration of the
activity corresponding to that constraint by A days will increase the duration of the proj-
ect by A days. For example, an increase of A days in the duration of activity B will in-
crease the duration of the project by A days. This assumes that the current basis remains
optimal.

Crashing the Project

In many situations, the project manager must complete the project in a time that is less
than the length of the critical path. For instance, suppose Widgetco believes that to have
any chance of being a success, product 3 must be available for sale before the competi-
tor’s product hits the market. Widgetco knows that the competitor’s product is scheduled
to hit the market 26 days from now, so Widgetco must introduce product 3 within 25 days.
Because the critical path in Example 6 has a length of 38 days, Widgetco will have to ex-
pend additional resources to meet the 25-day project deadline. In such a situation, linear
programming can often be used to determine the allocation of resources that minimizes
the cost of meeting the project deadline.

Suppose that by allocating additional resources to an activity, Widgetco can reduce the
duration of any activity by as many as 5 days. The cost per day of reducing the duration
of an activity is shown in Table 14. To find the minimum cost of completing the project
by the 25-day deadline, define variables A, B, C, D, E, and F as follows:

A = number of days by which duration of activity A is reduced

F = number of days by which duration of activity F is reduced
X; = time that the event corresponding to node j occurs

Then Widgetco should solve the following LP:

min z = 10A + 20B + 3C + 30D + 40E + 50F
s.t. A=5

B=5

C=5

D=5

E=5

F=5
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MIN X6 - X1

SUBJECT TO
2) - X1 + X3 > 6
3) - X1 + X2 > 9
4) - X3 + X5 >= 8
5) - X3 + X4 >= 7
6) X5 - X4 >= 10
7) X6 - X5 >= 12
8) X3 -X2>= 0

END

LP OPTIMUM FOUND AT STEP 7
OBJECTIVE FUNCTION VALUE

1) 38.0000000

VARIABLE VALUE REDUCED COST
X6 38.000000 0.000000
X1 0.000000 0.000000
X3 9.000000 0.000000
X2 9.000000 0.000000
X5 26.000000 0.000000
X4 16.000000 0.000000

ROW SLACK OR SURPLUS DUAL PRICES

2) 3.000000 0.000000
3) 0.000000 -1.000000
4) 9.000000 0.000000
5) 0.000000 -1.000000
6) 0.000000 -1.000000
7 0.000000 -1.000000
8) 0.000000 -1.000000

NO. ITERATIONS= 7

RANGES IN WHICH THE BASIS 1S UNCHANGED

OBJ COEFFICIENT RANGES

VARIABLE CURRENT ALLOWABLE ALLOWABLE
COEF INCREASE DECREASE
X6 1.000000 INFINITY 0.000000
X1 ~1.000000 INFINITY 0.000000
X3 1.000000 INFINITY 0.000000
X2 1.000000 INFINITY 0.000000
X5 1.000000 INFINITY 0.000000
X4 1.000000 INFINITY 0.000000
RIGHTHAND SIDE RANGES
ROW CURRENT ALLOWABLE ALLOWABLE
RHS INCREASE DECREASE
2 6.000000 3.000000 INFINITY
3 9.000000 INFINITY 3.000000
4 8.000000 9.000000 INFINITY
FIGURE 34 5 7.000000 INFINITY 9.000000
6 10.000000 INFINITY 9.000000
LINDO Output 7 12.000000 INFINITY 38.000000
for Widgetco 8 0.000000 INFINITY 3.000000
TABLE 14
A B C D E F
$10 $20 $3 $30 $40 $50
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Widget1.Ing

FIGURE 35
Duration of Activities
after Crashing

Xo =X +9—B (Arc (1, 2) constraint)
X3= X, +6—A (Arc (1, 3) constraint)
Xs = X3 +8—C (Arc (3, 5) constraint)
X4 =X3+7—D (Arc (3, 4) constraint)
Xs = X4 +10 — E (Arc (4, 5) constraint)
Xe = X5 + 12 — F (Arc (5, 6) constraint)
X3 =X, + 0 (Arc (2, 3) constraint)
X — X1 =25
A, B,C,D,E F=0,xurs

The first six constraints stipulate that the duration of each activity can be reduced by at
most 5 days. As before, the next seven constraints ensure that event j cannot occur until
after node i occurs and activity (i, j) is completed. For example, activity B (arc (1, 2)) now
has a duration of 9 — B. Thus, we need the constraint x, = x; + (9 — B). The constraint
Xe — X1 = 25 ensures that the project is completed within the 25-day deadline. The ob-
jective function is the total cost incurred in reducing the duration of the activities. An op-
timal solution to this LP is z = $390, x; = 0, Xo = 4, X3 = 4, X4 = 6, X5 = 13, Xg = 25,
A=2,B=5C=0,D=5,E =3, F=0.After reducing the durations of projects B,
A, D, and E by the given amounts, we obtain the project network pictured in Figure 35.
The reader should verify that A, B, D, E, and F are critical activities and that 1-2—-3-4-5-6
and 1-3-4-5-6 are both critical paths (each having length 25). Thus, the project deadline
of 25 days can be met for a cost of $390.

Using LINGO to Determine the Critical Path

Many computer packages (such as Microsoft Project) enable the user to determine (among
other things!) the critical path(s) and critical activities in a project network. You can al-
ways find a critical path and critical activities using LINDO, but LINGO makes it very
easy to communicate the necessary information to the computer. The following LINGO
program (file Widget1.Ing) generates the objective function and constraints needed to find
the critical path for the project network of Example 6 via linear programming.

MODEL :
1]SETS:
2INODES/1. .6/:TIME;
3]ARCS(NODES, NODES)/
4]1,2 1,3 2,3 3,4 3,5 4,5 5,6/:DUR;
5]ENDSETS
GIMIN=TIME(6)-TIME(L);
71@FOR(ARCS(1,3) - TIME(I)>TIME(1)+DUR(I,J));
8]DATA:
9]DUR=9,6,0,7,8,10,12;
10]ENDDATA
END

Line 1 begins the SETS portion of the program. In line 2, we define the six nodes of
the project network and associate with each node a time that the events corresponding to
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FIGURE 36

Widget2.Ing
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MIN -ET(1 + ET(6
SUBJECT TO
2)- ET(1 + ET(2 >= 9
3)- ET(1 + ET(3 >= 6
4)- ET(2 + ET(3 >= O
5)- ET(3 + ET(4 >= 7
6)- ET(3 + ET(5 >= 8
7)- ET(4 + ET(5 >= 10
8)- ET(5 + ET(6 >= 12
END
LP OPTIMUM FOUND AT STEP 6
OBJECTIVE VALUE = 38.0000000
VARIABLE VALUE REDUCED COST
ET(C 1) 0.0000000E+00 0.0000000E+00
ETC 2) 9.000000 0.0000000E+00
ET( 3) 9.000000 0.0000000E+00
ET( 4) 16.00000 0.0000000E+00
ET(C 5) 26.00000 0.0000000E+00
ET( 6) 38.00000 0.0000000E+00
DUR(C 1, 2) 9.000000 0.0000000E+00
DUR(C 1, 3) 6.000000 0.0000000E+00
DUR(C 2, 3) 0.0000000E+00 0.0000000E+00
DUR( 3, 4) 7.000000 0.0000000E+00
DUR( 3, 5) 8.000000 0.0000000E+00
DUR( 4, 5) 10.00000 0.0000000E+00
DUR( 5, 6) 12.00000 0.0000000E+00
ROW SLACK OR SURPLUS DUAL PRICE
1 38.00000 1.000000
2 0.0000000E+00 -1.000000
3 3.000000 0.0000000E+00
4 0.0000000E+00 -1.000000
5 0.0000000E+00 -1.000000
6 9.000000 0.0000000E+00
7 0.0000000E+00 -1.000000
8 0.0000000E+00 -1.000000

the node occurs. For example, TIME(3) represents the time when activities A and B have
just been completed. In line 3, we generate the arcs in the project network by listing them
(separated by spaces). For example, arc (3, 4) represents activity D. In line 4, we associ-
ate a duration (DUR) of each activity with each arc. Line 5 ends the SETS section of the
program.

Line 6 specifies the objective, to minimize the time it takes to complete the project.
For each arc defined in line 3, line 7 creates a constraint analagous to x; = x; + t;;.

Line 8 begins the DATA section of the program. In line 9, we list the duration of each
activity. Line 10 concludes the data entry and the END statement concludes the program.
The output from this LINGO model is given in Figure 36, where by following the arcs
corresponding to constraints having dual prices of —1, we find the critical path to be
1-2-3-4-5-6

To find the critical path in any network we would begin by listing the nodes, arcs, and
activity durations in our program. Then we would modify the objective function created
by line 6 to reflect the number of nodes in the network. For example, if there were 10
nodes in the project network, we would change line 6 to MIN=TIME(10)-TIME(1); and
we would be ready to go!

The following LINGO program (file Widget2.Ing) enables the user to determine the
critical path and total float at each node for Example 6 without using linear programming.

MODEL :

1JMODEL :

2]SETS:

3INODES/1. .6/:ET,LT;
4]ARCS(NODES,NODES) /1,2
5]ENDSETS

6]DATA:
7IDUR =

1,3 2,3 3,4 3,5 4,5 5,6/:DUR,TFLOAT;

9,6,0,7,8,10,12;
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8]ENDDATA
9]ET(1)=0;
10]@FOR(NODES(J) | J#GT#1:
11JET(J) = @MAX(ARCS(I,J): ET(I)+DUR(I,J));:);
12]LNODE=@S1ZE(NODES) ;
13]LT(LNODE) = ET(LNODE);
1471@FOR(NODES(I) | I#LT#LNODE:
15]LT(1) = @MINCARCS(1,J): LT(JI) - DUR(1,J)):);
16]@FORCARCS(1,J) - TFLOAT(1,J3)=LT(JI)-ET(1)-DUR(1,J));

END

In line 3, we define the nodes of the project network and associate an early event time
(ET) and late event time (LT) with each node. We define the arcs of the project network
by listing them in line 4. With each arc we associate the duration of the arc’s activity and
the total float of the activity. In line 7, we input the duration of each activity.

To begin the computation of the ET(J)’s for each node, we set ET(1) = 0 in line 9. In
lines 10-11, we compute ET(J) for all other nodes. For J > 1 ET(J) is the maximum value
of ET(I) + DUR(l, J) for all (I, J) such that (I, J) is an arc in the network. By using the
@SIZE function, which returns the number of elements in a set, we identify the finish
node in the network in line 12. Thus, line 12 defines node 6 as the last node. In line 13,
we set LT(6) = ET(6). Lines 14-15 work backward from node 6 toward node 1 to com-
pute the LT(I)’s. For every node | other than the last node (6), LT(l) is the minimum of
LT() — DUR (1, J), where the minimum is taken over all (I, J) such that (I, J) is an arc
in the project network.

Finally, line 16 computes the total float for each activity (I, J) from total float for ac-
tivity (I, J) = LT(Node J) — ET(Node I) — Duration (I, J). All activities whose total float
equals O are critical activities.

After inputting a list of nodes, arcs, and activity durations we can use this program to
analyze any project network (without changing any of lines 9-16). It is also easy to write
a LINGO program that can be used to crash the network (see Problem 14).

PERT: Program Evaluation and Review Technique

CPM assumes that the duration of each activity is known with certainty. For many proj-
ects, this is clearly not applicable. PERT is an attempt to correct this shortcoming of CPM
by modeling the duration of each activity as a random variable. For each activity, PERT
requires that the project manager estimate the following three quantities:

a = estimate of the activity’s duration
under the most favorable conditions

b = estimate of the activity’s duration
under the least favorable conditions
m = most likely value for the activity’s duration

Let Tj; (random variables are printed in boldface) be the duration of activity (i, j). PERT
requires the assumption that Tj; follows a beta distribution. The specific definition of a
beta distribution need not concern us, but it is important to realize that it can approximate
a wide range of random variables, including many positively skewed, negatively skewed,
and symmetric random variables. If Tj; follows a beta distribution, then it can be shown
that the mean and variance of T;; may be approximated by

a+4m+ Db
E(Ty) = 5 )
_ 2
varTy; = % ®)
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PERT requires the assumption that the durations of all activities are independent. Then
for any path in the project network, the mean and variance of the time required to com-
plete the activities on the path are given by

E(Ty;) = expected duration of activities on any path (6)

(i, j)Epath
Z varT;; = variance of duration of activities on any path M

(i, j)Epath

Let CP be the random variable denoting the total duration of the activities on a critical
path found by CPM. PERT assumes that the critical path found by CPM contains enough
activities to allow us to invoke the Central Limit Theorem and conclude that

CP= > Ty
(i, j)Ecritical path
is normally distributed. With this assumption, (4)—(7) can be used to answer questions
concerning the probability that the project will be completed by a given date. For exam-
ple, suppose that for Example 6, a, b, and m for each activity are shown in Table 15. Now
(4) and (5) yield

Y
BTy = 2T 18+36F o, = 13257 _ 455
6 36
2
BTy = 2710+ 24F o o, = 102 _ 445
6 36
3+ 13+ 32 — 3)?
E(T35) = { } =38 VarT35 = (13 3) = 2.78
6 36
a2
SR LA ) S ct Kb | O
6 36
2
E(T4s) = w =10 varT s = % = 0.44
_oy2
E(Ty) = 215+ 48} 12 Y 12 varme = U529 - J}

Of course, the fact that arc (2, 3) is a dummy arc yields
E(T23) = var T23 = O
Recall that the critical path for Example 6 was 1-2-3-4-5-6. From Equations (6) and (7),

E(CP)=9+0+7+ 10+ 12 = 38
varCP =178 +0+ 4+ 044 +1=17.22

Then the standard deviation for CP is (7.22)2 = 2.69.

TABLE 15
a, b, and m for Activities in Widgeto

Activity a b m
1,2 5 13 9
1,3) 2 10 6
3,5) 3 13 8
3,4 1 13 7
(4, 5) 8 12 10
(5, 6) 9 15 12
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FIGURE 37
Project Network to
lllustrate Difficulties
with PERT

Applying the assumption that CP is normally distributed, we can answer questions such
as the following: What is the probability that the project will be completed within 35 days?
To answer this question, we must also make the following assumption: No matter what the
durations of the project’s activities turn out to be, 1-2—-3-4-5-6 will be a critical path. This
assumption implies that the probability that the project will be completed within 35 days
is just P(CP = 35). Standardizing and applying the assumption that CP is normally dis-
tributed, we find that Z is a standardized normal random variable with mean 0 and vari-
ance 1. The cumulative distribution function for a normal random variable is tabulated in
Table 16. For example, P(Z = —1) = 0.1587 and P(Z = 2) = 0.9772. Thus,

Cp—38 _35—38
269 269

where F(—1.12) = .13 may be obtained using the NORMSDIST function in Excel. En-
tering the formula =NORMSDIST(x) returns the probability that a standard normal ran-
dom variable with mean 0 and standard deviation 1 is less than or equal to x. For exam-
ple =NORMDIST(—1.12) yields .1313.

P(CP =35 =P ( ) = P(Z = —1.12) = .13

Difficulties with PERT

There are several difficulties with PERT:
1 The assumption that the activity durations are independent is difficult to justify.
2 Activity durations may not follow a beta distribution.

3 The assumption that the critical path found by CPM will always be the critical path
for the project may not be justified.

The last difficulty is the most serious. For example, in our analysis of Example 6, we as-
sumed that 1-2—-3-4-5-6 would always be the critical path. If, however, activity A were
significantly delayed and activity B were completed ahead of schedule, then the critical
path might be 1-3-4-5-6.

Here is a more concrete example of the fact that (because of the uncertain duration of
activities) the critical path found by CPM may not actually be the path that determines
the completion date of the project. Consider the simple project network in Figure 37. As-

TABLE 16
a, b, and m for Figure 37

Activity a b m
A 1 9

B 6 14 10
C 5 7 6
D 7 9 8
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FIGURE 38
Network to Determine
Critical Path If Each
Activity’s Duration
Equals m

A5 B 10

Ce@y

TABLE 17

Probability That Each Arc
Is on a Critical Path

Activity Probability
17

. 7

" z

c 27

D 12

sume that for each activity in Table 16, a, b, and m each occur with probability % If CPM
were applied (using the expected duration of each activity as the duration of the activity),
then we would obtain the network in Figure 38. For this network, the critical path is
1-2-4. In actuality, however, the critical path could be 1-3-4. For example, if the opti-
mistic duration of B (6 days) occurred and all other activities had a duration m, then
1-3-4 would be the critical path in the network. If we assume that the durations of the
four activities are independent random variables, then using elementary probability (see
Problem 11 at the end of this section), it can be shown that there is a % probability that
1-3-4 is the critical path, a % chance that 1-2-4 is the critical path, and a 22—7 chance that
1-2-4 and 1-3-4 will both be critical paths. This example shows that one must be cau-
tious in designating an activity as critical. In this situation, the probability that each ac-
tivity is actually a critical activity is shown in Table 17.

When the duration of activities is uncertain, the best way to analyze a project is to use
a Monte Carlo simulation add-in for Excel. In Chapter 23, we will show how to use the
Excel add-in @Risk to perform Monte Carlo simulations. With @Risk, we can easily de-
termine the probability that a project is completed on time and determine the probability
that each activity is critical.

PROBLEMS

Group A

1 What problem would arise if the network in Figure 39 2 A company is planning to manufacture a product that

were a portion of a project network? consists of three parts (A, B, and C). The company
anticipates that it will take 5 weeks to design the three parts
and to determine the way in which these parts must be

FIGURE 39 assembled to make the final product. Then the company

Network for Problem /@ estimates that it will take 4 weeks to make part A, 5 weeks
to make part B, and 3 weeks to make part C. The company
must test part A after it is completed (this takes 2 weeks).

(D—r

446

The assembly line process will then proceed as follows:
assemble parts A and B (2 weeks) and then attach part C (1
week). Then the final product must undergo 1 week of
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testing. Draw the project network and find the critical path,
total float, and free float for each activity. Also set up the
LP that could be used to find the critical path.

When determining the critical path in Problems 3 and 4,
assume that m = activity duration.

3 Consider the project network in Figure 40. For each
activity, you are given the estimates of a, b, and m in Table
18. Determine the critical path for this network, the total
float for each activity, the free float for each activity, and the
probability that the project is completed within 40 days.
Also set up the LP that could be used to find the critical
path.

4 The promoter of a rock concert in Indianapolis must
perform the tasks shown in Table 19 before the concert can
be held (all durations are in days).

a Draw the project network.
b Determine the critical path.

¢ If the advance promoter wants to have a 99% chance
of completing all preparations by June 30, when should
work begin on finding a concert site?

d Set up the LP that could be used to find the project’s
critical path.

5 Consider the (simplified) list of activities and predecessors
that are involved in building a house (Table 20).

FIGURE 40
Network for Problem 3

® O @
€<@<@/@

TABLE 18

Activity a b m
1,2 4 8 6
1,3) 2 8 4
2, 4) 1 7 3
3, 4) 6 12 9
3,5) 5 15 10
(3, 6) 7 18 12
4,7) 5 12 9
5,7) 1 3 2
(6, 8) 2 6 3
(7,9 10 20 15
8,9 6 11 9

—p—

TABLE 19
Immediate

Activity Description Predecessors  a b m
A Find site — 2 4 3
B Find engineers A 1 3 2
C Hire opening act A 2 10 6
D Set radio and TV ads C 1 3 2
E Set up ticket agents A 1 5 3
F Prepare electronics B 2 4 3
G Print advertising C 3 7 5
H Set up transportation C 05 15 1
| Rehearsals FH 1 2 15
J Last-minute details | 1 3 2
TABLE 20

Immediate Duration
Activity Description Predecessors (Days)
A Build foundation — 5
B Build walls and ceilings A 8
C Build roof B 10
D Do electrical wiring B 5
E Put in windows B 4
F Put on siding E 6
G Paint house C F 3

a Draw a project network, determine the critical path,
find the total float for each activity, and find the free
float for each activity.

b Suppose that by hiring additional workers, the dura-
tion of each activity can be reduced. The costs per day
of reducing the duration of the activities are given in
Table 21. Write down the LP to be solved to minimize
the total cost of completing the project within 20 days.

6 Horizon Cable is about to expand its cable TV offerings
in Smalltown by adding MTV and other exciting stations.
The activities in Table 22 must be completed before the
service expansion is completed.
a Draw the project network and determine the critical
path for the network, the total float for each activity, and
the free float for each activity.

b Set up the LP that can be used to find the project’s
critical path.

7 When an accounting firm audits a corporation, the first
phase of the audit involves obtaining “knowledge of the
business.” This phase of the audit requires the activities in
Table 23.
a Draw the project network and determine the critical
path for the network, the total float for each activity, and
the free float for each activity. Also set up the LP that
can be used to find the project’s critical path.

8.4 (PM and PERT 447

o



1091.ch08 5/13/03 1:23

PM  Page 448

—p—

TABLE 21 TABLE 24
Maximum Possible Maximum Possible
Cost per Day of Reduction in Cost per Day of Reduction in
Reducing Duration Duration of Reducing Duration Duration of
Activity of Activity ($) Activity (Days) Activity of Activity ($) Activity (Days)
Foundation 30 2 A 100 3
Walls and ceiling 15 3 B 80 4
Roof 20 1 C 60 5
Electrical wiring 40 2 D 70 2
Windows 20 2 E 30 4
Siding 30 3 F 20 4
Paint 40 1 G 50 4
TABLE 22 FIGURE 41
e LINDO Output for Problem 8
Activity Description Predecessors  (Weeks)
MIN X6 - X1
. SUBJECT TO
A Choose stations — 2 2) - X1 +X2>= 5
B Get town council to A 4 3) - X2+ X3 > 8
: 4) - X3 + X4 >= 4
approve expansion 5) - X3 + X5 >= 10
6) - X4 + X5 >= 6
C Order converters needed B 3 7 X6 . X3 o= B
to expand service 8) X6 - X5 >= 3
) Install new dish to receive B 2 END
new stations
LP OPTIMUM FOUND AT STEP 6
E Install converters C,D 10
F Change bl"lng system B 4 OBJECTIVE FUNCTION VALUE
1) 26.0000000
VARIABLE VALUE REDUCED COST
X6 26.000000 0.000000
TABLE 23 X1 0.000000 0.000000
X2 5.000000 0.000000
Immediate Duration X3 13.000000 0.000000
o e X4 17.000000 0.000000
Activity Description Predecessors (Days) o 23000000 0.000000
A Determining terms of — 3 ROW SLACK OR SURPLUS DUAL PRICES
engagement 2) 0.000000 -1.000000
R . - 3) 0.000000 -1.000000
B Appraisal of auditability A 6 4) 0-000000 -1.000000
risk and materiality 5) 0.000000 0.000000
DR 6) 0.000000 -1.000000
C Identification of types of A 14 7 8.000000 0-000000
transactions and 8) 0-000000 -1.000000
possible errors NO. ITERATIONS= 6
D Systems description C 8
E Verification of systems D 4 RANGES IN WHICH THE BASIS 1S UNCHANGED
description 0BJ COEFFICIENT RANGES
i i VARIABLE CURRENT ALLOWABLE ALLOWABLE
F Evaluation of internal B, E 8 ConE INCREASE DECREASE
controls X6 1.000000 INFINITY 0.000000
H H X1 -1.000000 INFINITY 0.000000
G DESIgn of audit approach F 9 X2 0.000000 INFINITY 0.000000
X3 0.000000 INFINITY 0.000000
X4 0.000000 INFINITY 0.000000
X5 0.000000 INFINITY 0.000000
b Assume that the project must be completed in 30 RIGHTHAND SIDE RANGES
: P H ROW CURRENT ALLOWABLE ALLOWABLE
dayg. The duration of each activity can be reduced by in- RS INCREASE DECREASE
curring the costs shown in Table 24. Formulate an LP 2 5.000000 INFINITY 5.000000
inimi i 3 8.000000 INFINITY 13.000000
that_ can be gsed to minimize the cost of meeting the A 2000000 o, 000000 5000000
project deadline. 5 10.000000 INFINITY 0.000000
. . . 6 6.000000 0.000000 8.000000
8 The LINDO output in Figure 41 can be used to determine 7 5.000000 8.000000 INFINITY
8 3.000000 INFINITY 8.000000

the critical path for Problem 5. Use this output to do the

following:
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a Draw the project diagram.

b Determine the length of the critical path and the crit-
ical activities for this project.

9 Explain why an activity’s free float can never exceed the
activity’s total float.

10 A project is complete when activities A-E are
completed. The predecessors of each activity are shown in
Table 25. Draw the appropriate project diagram. (Hint:
Don’t violate rule 4.)

11 Determine the probabilities that 1-2—4 and 1-3-4 are
critical paths for Figure 37.

12 Given the information in Table 26, (a) draw the
appropriate project network, and (b) find the critical path.

13 The government is going to build a high-speed
computer in Austin, Texas. Once the computer is designed
(D), we can select the exact site (S), the building contractor
(C), and the operating personnel (P). Once the site is

TABLE 25
Activity Predecessors
A _
B A
C A
D B
E B, C
TABLE 26
Immediate Duration
Activity Predecessors (Days)
A — 3
B — 3
C — 1
D A B 3
E A B 3
F B, C 2
G D, E 4
H E 3
F1
FIGURE 43 B6 D4
( ) A2
C4 E2

—p—

selected, we can begin erecting the building (B). We can
start manufacturing the computer (COM) and preparing the
operations manual (M) only after contractor is selected. We
can begin training the computer operators (T) when the
operating manual and personnel selection are completed.
When the computer and the building are both finished, the
computer may be installed (1). Then the computer is
considered operational. Draw a project network that could
be used to determine when the project is operational.

14  Write a LINGO program that can be used to crash the
project network of Example 6 with the crashing costs given
in Table 14.

15 Consider the project diagram in Figure 42. This project
must be completed in 90 days. The time required to complete
each activity can be reduced by up to five days at the costs
given in Table 27.

Formulate an LP whose solution will enable us to
minimize the cost of completing the project in 90 days.

16-17  Find the critical path, total float, and free float for
each activity in the project networks of Figures 43 and 44.

FIGURE 42

=—@

B25 D40

TABLE 27

Cost of Reducing
Activities Duration

Activity by 1 Day (8)
A 300
B 200
C 350
D 260
E 320

e———©@

H1
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FIGURE 44
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8.5 Minimum-Cost Network Flow Problems

The transportation, assignment, transshipment, shortest-path, maximum flow, and CPM
problems are all special cases of the minimum-cost network flow problem (MCNFP). Any
MCNFP can be solved by a generalization of the transportation simplex called the net-
work simplex.

To define an MCNFP, let

xij = number of units of flow sent from node i to node j through arc (i, j)
i = net supply (outflow — inflow) at node i
cij = cost of transporting 1 unit of flow from node i to node j via arc (i, j)
Li; = lower bound on flow through arc (i, j)

(if there is no lower bound, let Lj; = 0)

Uij = upper bound on flow through arc (i, j)
(if there is no upper bound, let U;; = )

O

Then the MCNFP may be written as

min Z CijXij
all arcs

st D Xji— > X = b (for each node i in the network) )
i K

Lij = xij = Uj (for each arc in the network) (C)]

Constraints (8) stipulate that the net flow out of node i must equal b;. Constraints (8)
are referred to as the flow balance equations for the network. Constraints (9) ensure that
the flow through each arc satisfies the arc capacity restrictions. In all our previous exam-
ples, we have set L;; = 0.

Let us show that transportation and maximum-flow problems are special cases of the
minimum-cost network flow problem.

Formulating a Transportation Problem as an MCNFP

Consider the transportation problem in Table 28. Nodes 1 and 2 are the two supply points,
and nodes 3 and 4 are the two demand points. Then b; = 4, b, = 5, b3 = —6, and b, =
—3. The network corresponding to this transportation problem contains arcs (1, 3), (1, 4),
(2, 3), and (2, 4) (see Figure 45). The LP for this transportation problem may be written
as shown in Table 29.

The first two constraints are the supply constraints, and the last two constraints are (af-
ter being multiplied by —1) the demand constraints. Because this transportation problem
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TABLE 28

FIGURE 45
Representation of

Transportation Problem

as an MCNFP

[1] [2]
4 (Node 1)
(3] [4]
5 (Node 2)
6 3
(Node 3) (Node 4)
Supply point 1 @ Demand point 1
Supply point 2 @ Demand point 2
TABLE 29

MCNFP Representation of Transportation Problem

min z = X3 + 2Xy + 3Xo3 + 4y

X3 Xug Xo3 Xou ths Constraint
1 1 0 0 = 4 Node 1
0 0 1 1 = 5 Node 2
-1 0 -1 0 = —6 Node 3
0 -1 0 -1 = -3 Node 4

All variables non-negative

has no arc capacity restrictions, the flow balance equations are the only constraints. We
note that if the problem had not been balanced, we could not have formulated the problem
as an MCNFP. This is because if total supply exceeded total demand, we would not know
with certainty the net outflow at each supply point. Thus, to formulate a transportation (or
a transshipment) problem as an MCNFP, it may be necessary to add a dummy point.

Formulating a Maximum-Flow Problem as an MCNFP

To see how a maximum-flow problem fits into the minimum-cost network flow context,
consider the problem of finding the maximum flow from source to sink in the network of
Figure 6. After creating an arc ag joining the sink to the source, we have by, = b;= b, =
b; = bs; = 0. Then the LP constraints for finding the maximum flow in Figure 6 may be
written as shown in Table 30.

The first five constraints are the flow balance equations for the nodes of the network,
and the last six constraints are the arc capacity constraints. Because there is no upper limit
on the flow through the artificial arc, there is no arc capacity constraint for a,.

The flow balance equations in any MCNFP have the following important property:
Each variable x;; has a coefficient of +1 in the node i flow balance equation, a coefficient
of —1 in the node j flow balance equation, and a coefficient of O in all other flow balance
equations. For example, in a transportation problem, the variable x;; will have a coeffi-
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TABLE 30
MCNFP Representation of Maximum-Flow Problem

min z = x
Xso1 Kso2 Xi3 X2 X3 si X si Xo rhs Constraint
1 1 0 0 0 0 -1 = 0 Node so
-1 0 1 1 0 0 0 = 0 Node 1
0 -1 0 -1 0 1 0 = 0 Node 2
0 0 -1 0 1 0 0 = 0 Node 3
0 0 0 0 -1 -1 1 = 0 Node si
1 0 0 0 0 0 0 = 2 Arc (so, 1)
0 1 0 0 0 0 0 = 3 Arc (so0, 2)
0 0 1 0 0 0 0 = 4 Arc (1, 3)
0 0 0 1 0 0 0 = 3 Arc (1, 2)
0 0 0 0 1 0 0 = 1 Arc (3, si)
0 0 0 0 0 1 0 = 2 Arc (2, si)

All variables nonnegative

cient of +1 in the flow balance equation for supply point i, a coefficient of —1 in the flow
balance equation for demand point j, and a coefficient of 0 in all other flow balance equa-
tions. Even if the constraints of an LP do not appear to contain the flow balance equa-
tions of a network, clever transformation of an LP’s constraints can often show that an LP
is equivalent to an MCNFP (see Problem 6 at the end of this section).

An MCNFP can be solved by a generalization of the transportation simplex known as the
network simplex algorithm (see Section 8.7). As with the transportation simplex, the pivots
in the network simplex involve only additions and subtractions. This fact can be used to prove
that if all the b;’s and arc capacities are integers, then in the optimal solution to an MCNFP,
all the variables will be integers. Computer codes that use the network simplex can quickly
solve even extremely large network problems. For example, MCNFPs with 5,000 nodes and
600,000 arcs have been solved in under 10 minutes. To use a hetwork simplex computer code,
the user need only input a list of the network’s nodes and arcs, the ¢;;’s and arc capacity for
each arc, and the b;’s for each node. The network simplex is efficient and easy to use, so it is
extremely important to formulate an LP, if at all possible, as an MCNFP.

To close this section, we formulate a simple traffic assignment problem as an MCNFP.

EXAMPLE 7 Traffic MCNFP

452

Solution

Each hour, an average of 900 cars enter the network in Figure 46 at node 1 and seek to
travel to node 6. The time it takes a car to traverse each arc is shown in Table 31. In Fig-
ure 46, the number above each arc is the maximum number of cars that can pass by any
point on the arc during a one-hour period. Formulate an MCNFP that minimizes the to-
tal time required for all cars to travel from node 1 to node 6.

Let
Xij = number of cars per hour that traverse the arc from node i to node j
Then we want to minimize
z = 10Xqp + 50X13 + 70X25 + 30Xp4 + 30X56 + 30X45 + 60X46 + 60X35 + 10Xg4

We are given that b; = 900, b, = b; = b, = bs = 0, and bg = —900 (we will not in-
troduce the artificial arc connecting node 6 to node 1). The constraints for this MCNFP
are shown in Table 32.
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600

FIGURE 46 800 100 300 &
Representation of 600 @
Traffic Example as 500
MCNFP 400 600
TABLE 31
Travel Times for Traffic
Example
Time
e (L)
1,2 10
()] 50
2,5) 70
()] 30
(5, 6) 30
4,5) 30
4, 6) 60
(3, 5) 60
(3,4 10
TABLE 32 -
MCNEP Representation of 1 X3 Xoq Xo5 Xag X35 X5 X Xsg rhs Constraint
Traffic Exammg 1 1 0 0 0 0 0 0 0 = 900 Node 1
-1 0 1 1 0 0 0 0 0 = 0 Node 2
0 -1 0 0 1 1 0 0 0 = 0 Node 3
0 0 -1 0o -1 0 1 1 0 = 0 Node 4
0 0 0 -1 0 -1 -1 0 1 = 0 Node 5
0 0 0 0 0 0 0 -1 -1 = —900 Node 6
1 0 0 0 0 0 0 0 0 = 800 Arc (1, 2)
0 1 0 0 0 0 0 0 0 = 600 Arc (1, 3)
0 0 1 0 0 0 0 0 0 = 600 Arc (2, 4)
0 0 0 1 0 0 0 0 0 = 100 Arc (2, 5)
0 0 0 0 1 0 0 0 0 = 300 Arc (3, 4)
0 0 0 0 0 1 0 0 0 = 400 Arc (3, 5)
0 0 0 0 0 0 1 0 0 = 600 Arc (4, 5)
0 0 0 0 0 0 0 1 0 = 400 Arc (4, 6)
0 0 0 0 0 0 0 0 1 = 600 Arc (5, 6)

All variables non-negative

T
Solving an MCNFP with LINGO

Traffic.Ing The following LINGO program (file Traffic.Ing) can be used to find the optimal solution
to Example 7 (or any MCNFP).
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MODEL :
1] SETS:
2] NODES/1..6/:SUPP;
3] ARCS(NODES,NODES)/1,2 1,3 2,4 2,5 3,4 3,5 4,5 4,6 5,6/
4] :CAP,FLOW,COST;
5] ENDSETS
6] MIN=@SUM(ARCS:COST*FLOW) ;
71 @FOR(ARCS(I,J):FLOW(I,J)<CAP(I1,J3));
8] @FOR(NODES(I):-@SUM(ARCS)(J, 1) :FLOW(J, 1))
9] +@SUM(ARCS(I,J) :FLOW(I,J))=SUPP(1));
10] DATA:
11] C0ST=10,50,30,70,10,60,30,60,30;
12] SUPP=900,0,0,0,0,-900;
13] CAP=800,600,600,100,300,400,600,400,600;
141 ENDDATA
END

In line 2, we define the network’s nodes and associate a net supply (flow out—flow in)
with each node. The supplies data are entered in line 12. In line 3, we define, by listing, the
arcs in the network and in line 4 associate a capacity (CAP), a flow (FLOW), and a cost-per-
unit-shipped (COST) with each arc. The unit shipping costs data are entered in line 11. Line
6 generates the objective function by summing over all arcs (unit cost for arc)*(flow through
arc). Line 7 generates each arc’s capacity constraint (arc capacities data are entered in line
13). For each node, lines 8-9 generate the conservation-of-flow constraint. They imply that
for each node I, —(flow into node I) + (flow out of node 1) = (supply of node I). When
solved on LINGO, we find that the solution to Example 7 is z =95,000 minutes, X, = 700,

X13 = 200, Xog = 600, Xog = 100, X34 = 200, Xg45 = 400, Xa6 = 400, X5 = 500.
Our LINGO program can be used to solve any MCNFP. Just input the set of nodes,
supplies, arcs, and unit shipping cost; hit GO and you are done!

PROBLEMS

Note: To formulate a problem as an MCNFP, you should
draw the appropriate network and determine the cj’s, the
bi’s, and the arc capacities.

Group A

1 Formulate the problem of finding the shortest path from
node 1 to node 6 in Figure 2 as an MCNFP. (Hint: Think of
finding the shortest path as the problem of minimizing the
total cost of sending 1 unit of flow from node 1 to node 6.)

2 a Find the dual of the LP that was used to find the
length of the critical path for Example 6 of Section 8.4.
b Show that the answer in part (a) is an MCNFP.
¢ Explain why the optimal objective function value for
the LP found in part (a) is the longest path in the proj-
ect network from node 1 to node 6. Why does this jus-
tify our earlier claim that the critical path in a project
network is the longest path from the start node to the
finish node?

3 Fordco produces cars in Detroit and Dallas. The Detroit
plant can produce as many as 6,500 cars, and the Dallas
plant can produce as many as 6,000 cars. Producing a car
costs $2,000 in Detroit and $1,800 in Dallas. Cars must be
shipped to three cities. City 1 must receive 5,000 cars, city
2 must receive 4,000 cars, and city 3 must receive 3,000

454 charTER 8 Network Models

cars. The cost of shipping a car from each plant to each city
is given in Table 33. At most, 2,200 cars may be sent from
a given plant to a given city. Formulate an MCNFP that can
be used to minimize the cost of meeting demand.

4 Each year, Data Corporal produces as many as 400
computers in Boston and 300 computers in Raleigh. Los
Angeles customers must receive 400 computers, and 300
computers must be supplied to Austin customers. Producing
a computer costs $800 in Boston and $900 in Raleigh.
Computers are transported by plane and may be sent through
Chicago. The costs of sending a computer between pairs of
cities are shown in Table 34.

a Formulate an MCNFP that can be used to minimize

the total (production + distribution) cost of meeting

Data Corporal’s annual demand.

TABLE 33

To (8)
From City 1 City 2 City 3
Detroit 800 600 300
Dallas 500 200 200

o
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TABLE 34

To (§)
From Chicago Austin Los Angeles
Boston 80 220 280
Raleigh 100 140 170
Chicago — 40 50

b How would you modify the part (a) formulation if at
most 200 units could be shipped through Chicago? [Hint:
Add an additional node and arc to this part (a) network.]

5 Oilco has oil fields in San Diego and Los Angeles. The
San Diego field can produce 500,000 barrels per day, and
the Los Angeles field can produce 400,000 barrels per day.
Oil is sent from the fields to a refinery, in either Dallas or
Houston (assume each refinery has unlimited capacity). To
refine 100,000 barrels costs $700 at Dallas and $900 at
Houston. Refined oil is shipped to customers in Chicago
and New York. Chicago customers require 400,000 barrels
per day, and New York customers require 300,000 barrels
per day. The costs of shipping 100,000 barrels of oil (refined
or unrefined) between cities are shown in Table 35.

a Formulate an MCNFP that can be used to determine

how to minimize the total cost of meeting all demands.

b If each refinery had a capacity of 500,000 barrels
per day, how would the part (a) answer be modified?

Group B

6 Workco must have the following number of workers
available during the next three months: month 1, 20; month
2, 16; month 3, 25. At the beginning of month 1, Workco
has no workers. It costs Workco $100 to hire a worker and
$50 to fire a worker. Each worker is paid a salary of
$140/month. We will show that the problem of determining
a hiring and firing strategy that minimizes the total cost
incurred during the next three (or in general, the next n)
months can be formulated as an MCNFP.
a Let

Xjj = number of workers hired at beginning of month i
and fired after working till end of month j — 1
(if j = 4, the worker is never fired). Explain why the fol-
lowing LP will yield a minimum-cost hiring and firing
strategy:

TABLE 35

To (§)
From Dallas Houston New York Chicago
Los Angeles 300 110 — —
San Diego 420 100 — —
Dallas — — 450 550
Houston — — 470 530

—p—

min z = 50(Xyo + X3 + X23)
+ 100(X12 + X13 + X14 + Xoz +Xo4 + Xaa)
+ 140(X12 + Xoz + Xaa)
+ 280(Xq3 + X24) + 420X14
s.t. (1) X2 + Xq3 + Xaa —e, =20
(Month 1 constraint)
(2) X3 + Xg4 + Xoz + Xou — €, = 16
(Month 2 constraint)
—e3=25
(Month 3 constraint)

(3) X1a + X4 + Xaa

XijZO

b To obtain an MCNFP, replace the constraints in part
(a) by

i Constraint (1);

il Constraint (2) — Constraint (1);

ili Constraint (3) — Constraint (2);

iv — (Constraint (3)).
Explain why an LP with Constraints (i)—(iv) is an
MCNFP.

¢ Draw the network corresponding to the MCNFP ob-
tained in answering part (b).

7" Braneast Airlines must determine how many airplanes
should serve the Boston—New York—Washington air corridor
and which flights to fly. Braneast may fly any of the daily
flights shown in Table 36. The fixed cost of operating an
airplane is $800/day. Formulate an MCNFP that can be used
to maximize Braneast’s daily profits. (Hint: Each node in
the network represents a city and a time. In addition to arcs
representing flights, we must allow for the possibility that
an airplane will stay put for an hour or more. We must
ensure that the model includes the fixed cost of operating a
plane. To include this cost, the following three arcs might
be included in the network: from Boston 7 p.m. to Boston
9 a.m.; from New York 7 p.m. to New York 9 a.m.; and from
Washington 7 p.m. to Washington 9 A.m.)

8 Daisymay Van Line moves people between New York,
Philadelphia, and Washington, D.C. It takes a van one day to
travel between any two of these cities. The company incurs
costs of $1,000 per day for a van that is fully loaded and
traveling, $800 per day for an empty van that travels, $700
per day for a fully loaded van that stays in a city, and $400
per day for an empty van that remains in a city. Each day of
the week, the loads described in Table 37 must be shipped.
On Monday, for example, two trucks must be sent from
Philadelphia to New York (arriving on Tuesday). Also, two
trucks must be sent from Philadelphia to Washington on
Friday (assume that Friday shipments must arrive on
Monday). Formulate an MCNFP that can be used to
minimize the cost of meeting weekly requirements. To
simplify the formulation, assume that the requirements
repeat each week. Then it seems plausible to assume that
any of the company’s trucks will begin each week in the
same city in which it began the previous week.

"This problem is based on Glover et al. (1982).
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TABLE 36

e S Flight Variable Cost
City Time City Time Revenue of Flight (S)
N.Y. 9 AM. Wash. 10 A.m. $900 400
N.Y. 2 P.M. Wash. KR:AVE $600 350
N.Y. 10 A.m. Bos. 11 Am. $800 400
N.Y. 4 pm. Bos. 5prm. $1,200 450
Wash. 9 AM. N.Y. 10 A.m. $1,100 400
Wash. 3 PM. N.Y. 4 p.m. $900 350
Wash. 10 A.m. Bos. 12 noon $1,500 700
Wash. 5 PM. Bos. 7 P.M. $1,800 900
Bos. 10 A.m. N.Y. 11 Am. $900 500
Bos. 2 P.M. N.Y. KR:AVE $800 450
Bos. 11 Am. Wash. 1pm. $1,100 600
Bos. 3PM. Wash. 5pPM. $1,200 650
TABLE 37
Trip Monday Tuesday Wednesday Thursday Friday
Phil.=N.Y. 2 — — — —
Phil.-Wash. — 2 — — 2
N.Y.=Phil. 3 2 — — —
N.Y.-Wash. — — 2 2 —
N.Y.=Phil. 1 — — — —
Wash.-N.Y. — — 1 — 1

8.6 Minimum Spanning Tree Problems

DEFINITION =&

FIGURE 47
lllustration of Loop and
Minimum Spanning Tree
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Suppose that each arc (i, j) in a network has a length associated with it and that arc (i, j)
represents a way of connecting node i to node j. For example, if each node in a network
represents a computer at State University, then arc (i, j) might represent an underground
cable that connects computer i with computer j. In many applications, we want to deter-
mine the set of arcs in a network that connect all nodes such that the sum of the length
of the arcs is minimized. Clearly, such a group of arcs should contain no loop. (A loop is
often called a closed path or cycle.) For example, in Figure 47, the sequence of arcs

(1, 2)—(2, 3)—(3, 1) is a loop.

For a network with n nodes, a spanning tree is a group of n — 1 arcs that
connects all nodes of the network and contains no loops.

12

(1,2)-(2,3)-3,1)
is a loop
(1,3), (2,3) is the

minimum spanning tree
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In Figure 47, there are three spanning trees:
1 Arcs (1, 2) and (2, 3)
2 Arcs (1, 2) and (1, 3)
3 Arcs (1, 3)and (2, 3)

A spanning tree of minimum length in a network is a minimum spanning tree (MST).
In Figure 47, the spanning tree consisting of arcs (1, 3) and (2, 3) is the unique minimum
spanning tree.

The following method (MST algorithm) may be used to find a minimum spanning tree.

Step 1 Begin at any node i, and join node i to the node in the network (call it node j)
that is closest to node i. The two nodes i and j now form a connected set of nodes C =
{i, j}, and arc (i, j) will be in the minimum spanning tree. The remaining nodes in the
network (call them C") are referred to as the unconnected set of nodes.

Step 2 Now choose a member of C’ (call it n) that is closest to some node in C. Let m
represent the node in C that is closest to n. Then the arc (m, n) will be in the minimum
spanning tree. Now update C and C’. Because n is now connected to {i, j}, C now equals
{i, j, n} and we must eliminate node n from C’.

Step 3 Repeat this process until a minimum spanning tree is found. Ties for closest node
and arc to be included in the minimum spanning tree may be broken arbitrarily.

At each step the algorithm chooses the shortest arc that can be used to expand C, so the
algorithm is often referred to as a “greedy” algorithm. It is remarkable that the act of be-
ing “greedy” at each step of the algorithm can never force us later to follow a “bad arc.”
In Example 1 of Chapter 9 we will see that for some types of problems, a greedy algo-
rithm may not yield an optimal solution! A justification of the MST algorithm is given in
Problem 3 at the end of this section. Example 8 illustrates the algorithm.

EXAMPLE 8 MST Algorithm

Solution

The State University campus has five minicomputers. The distance between each pair of
computers (in city blocks) is given in Figure 48. The computers must be interconnected
by underground cable. What is the minimum length of cable required? Note that if no arc
is drawn connecting a pair of nodes, this means that (because of underground rock for-
mations) no cable can be laid between these two computers.

We want to find the minimum spanning tree for Figure 48.

Iteration 1  Following the MST algorithm, we arbitrarily choose to begin at node 1. The
closest node to node 1 is node 2. Now C = {1, 2}, C' = {3, 4, 5}, and arc (1, 2) will be
in the minimum spanning tree (see Figure 49a).

Iteration 2 Node 5 is closest (two blocks distant) to C. Because node 5 is two blocks from
node 1 and from node 2, we may include either arc (2, 5) or arc (1, 5) in the minimum
spanning tree. We arbitrarily choose to include arc (2, 5). Then C = {1, 2, 5} and C' =
{3, 4} (see Figure 49b).

Iteration 3 Node 3 is two blocks from node 5, so we may include arc (5, 3) in the mini-
mum spanning tree. Now C = {1, 2, 3, 5} and C’' = 4 (see Figure 49c).

Iteration 4 Node 5 is the closest node to node 4, so we add arc (5, 4) to the minimum
spanning tree (see Figure 49d).

We have now obtained the minimum spanning tree consisting of arcs (1, 2), (2, 5), (5, 3),
and (5, 4). The length of the minimum spanning tree is 1 + 2 + 2 + 4 = 9 blocks.
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FIGURE 48
Distances between
State University
Computers

Cc=1[12] C =[125]
C’ = [3,4,5] C" =134
C=1[123,5] Arcs (1, 2), (2, 5), (5, 3),
C’ = [4] and (5, 4) are the MST

FIGURE 49

MST Algorithm for

Computer Example ¢ iteration 3 d Iteration 4: MST has been found
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PROBLEMS

Group A

1 The distances (in miles) between the Indiana cities of
Gary, Fort Wayne, Evansville, Terre Haute, and South Bend
are shown in Table 38. It is necessary to build a state road
system that connects all these cities. Assume that for political
reasons no road can be built connecting Gary and Fort
Wayne, and no road can be built connecting South Bend and
Evansville. What is the minimum length of road required?

2 The city of Smalltown consists of five subdivisions.
Mayor John Lion wants to build telephone lines to ensure
that all the subdivisions can communicate with each other.
The distances between the subdivisions are given in Figure
50. What is the minimum length of telephone line required?
Assume that no telephone line can be built between
subdivisions 1 and 4.

Group B
3 In this problem, we explain why the MST algorithm
works. Define
S = minimum spanning tree
C: = nodes connected after iteration t of MST
algorithm has been completed

C{ = nodes not connected after iteration t of MST
algorithm has been completed

set of arcs in minimum spanning tree after t
iterations of MST algorithm have been
completed

A

TABLE 38

Fort Terre South

Gary Wayne Evansville Haute Bend

Gary — 132 217 164 58
Fort Wayne 132 — 290 201 79
Evansville 217 290 — 113 303
Terre Haute 164 201 113 — 196
South Bend 58 79 303 196 —

FIGURE 50
Network for Problem 2

Suppose the MST algorithm does not yield a minimum
spanning tree. Then, for some t, it must be the case that all
arcs in A;_; are in S, but the arc chosen at iteration t (call it
a,) of the MST algorithm is not in S. Then S must contain
some arc a; that leads from a node in C,_, to a node in C;_).
Show that by replacing arc a; with arc a, we can obtain a
shorter spanning tree than S. This contradiction proves that all
arcs chosen by the MST algorithm must be in S. Thus, the
MST algorithm does indeed find a minimum spanning tree.

4 a Three cities are at the vertices of an equilateral
triangle of unit length. Flying Lion Airlines needs to
supply connecting service between these three cities.
What is the minimum length of the two routes needed
to supply the connecting service?

b Now suppose Flying Lion Airlines adds a hub at the
“center” of the equilateral triangle. Show that the length
of the routes needed to connect the three cities has de-
creased by 13%. (Note: It has been shown that no mat-
ter how many “hubs” you add and no matter how many
points must be connected, you can never save more than
13% of the total distance needed to “span” all the orig-
inal points by adding hubs.)

8.7 The Network Simplex Method*

In this section, we describe how the simplex algorithm simplifies for MCNFPs. To simplify
our presentation, we assume that for each arc, Lj; = 0. Then the information needed to de-
scribe an MCNFP of the form (8)—(9) may be summarized graphically as in Figure 51. We
will denote the c;; for each arc by the symbol $, and the other number on each arc will rep-
resent the arc’s upper bound (Uj). The b; for any node with nonzero outflow will be listed in
parentheses. Thus, Figure 51 represents an MCNFP with ¢;» = 5, Co5 = 2, €13 = 4, Ca5 = 8§,

Based on Peterson (1990).

*This section covers topics that may be omitted with no loss of continuity.
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FIGURE 51
Graphical
Representation of
an MCNFP

FIGURE 52
Example of an MCNFP
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Ciyu =17, C3y = 10, ¢c45 = 5, bl = 10, b2 = 4, b3 = -3, b4 = —4, b5 = —7,Uy, =4, U25 =
10, Uy = 10, Uss = 5, Uy = 4, Uz, = 5, Uys = 5. For the network simplex to be used, we
must have Xb; = 0; usually this can be ensured by adding a dummy node.

Recall that when we used the simplex method to solve a transportation problem, the
following aspects of the simplex algorithm simplified: finding a basic feasible solution,
computing the coefficient of a nonbasic variable in row 0, and pivoting. We now describe
how these aspects of the simplex algorithm simplify when we are solving an MCNFP.

Basic Feasible Solutions for MCNFPs

How can we determine whether a feasible solution to an MCNFP is a bfs? Begin by ob-
serving that any bfs to an MCNFP will contain three types of variables:

1 Basic variables: In the absence of degeneracy, each basic variable x;; will satisfy Lj; <
Xij < Uj;; with degeneracy, it is possible for a basic variable x; to equal arc (i, j)’s upper
or lower bound.

2 Nonbasic variables x;: These equal arc (i, j)’s upper bound U;;.
3 Nonbasic variables x;;: These equal arc (i, j)’s lower bound Lj;.

Suppose we are solving an MCNFP with n nodes. In solving an MCNFP, we consider
the n conservation-of-flow constraints and ignore the upper- and lower-bound constraints
(for reasons that will soon become apparent). As in the transportation problem, any solu-
tion satisfying n — 1 of the conservation-of-flow constraints will automatically satisfy the
last conservation-of-flow constraint, so we may drop one such constraint. This means that
a bfs to an n-node MCNFP will have n — 1 basic variables. Suppose we choose a set of
n — 1 variables (or arcs). How can we determine whether this set of n — 1 variables yields
a basic feasible solution? A set of n — 1 variables will yield a bfs if and only if the arcs
corresponding to the basic variables form a spanning tree for the network. For example,
consider the MCNFP in Figure 52. In Figure 53, we give a bfs for this MCNFP. The ba-
sic variables are X3, Xas, Xo5, and X45. The variables x;, = 5 and x,4 = 4 are nonbasic vari-

5$10 FL 66
2$2
w (@ 3$12 ) 5$7 2 (10)

5$3
4 36 6$3
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FIGURE 53
Example of a bfs
for an MCNFP

5.7 5
2
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ables at their upper bound. (Such variables will be indicated by dashed arcs.) Because the
arcs (1, 3), (3, 5), (2, 5), and (4, 5) form a spanning tree (they connect all nodes of the
graph and do not contain any cycles), we know that this is a bfs. As will soon become
clear, a bfs for small problems can often be obtained by trial and error.

Computing Row 0 for Any bfs

For any given bfs, how do we determine the objective function coefficient for a nonbasic
variable? Suppose we arbitrarily choose to drop the conservation-of-flow constraint for
node 1. For a given bfs, let cgyB™* = [y» ys --- yn]. Each variable xij will have a
+1 coefficient in the node i flow constraint and a —1 coefficient in the node j constraint.
If we define y; = 0, then the coefficient of x;; in row 0 of a given tableau may be written
as Cij = ¥i — Yj — Cij. Each basic variable must have ¢;; = 0, so we can find y;, Yo, . . .,
Yn by solving the following system of linear equations:

y1 =0, y; —vy;=c; foreach basic variable

Theys, Yo, . . ., ¥n corresponding to a bfs are often called the simplex multipliers for the bfs.

How can we determine whether a bfs is optimal? For a bfs to be optimal, it must be
possible to improve (decrease) the value of z by changing the value of a nonbasic vari-
able. Note that ¢;; = 0 if and only if increasing x;; cannot decrease z. Also note that C;; =
0 if and only if decreasing x;; cannot decrease z. These observations can be used to show
that a bfs is optimal if and only if the following conditions are met:

1 If a variable x;; = Lj;, then an increase in x;; cannot result in a decrease in z. Thus, if
Xij = Ljj and the bfs is optimal, then ¢;; = 0 must hold.

2 If a variable x;; = Uj;, then a decrease in x;; cannot result in a decrease in z. Thus, if
Xij = Uj; and the bfs is optimal, then ¢; = 0 must hold.

If conditions 1 and 2 are not met, then z can be improved (barring degeneracy) by piv-
oting into the basis any nonbasic variable violating either condition. To illustrate, let’s de-
termine the objective function coefficient for each nonbasic variable in the simplex
tableau corresponding to the bfs in Figure 53. To find y,, Vs, Y3, Y4, and ys, we solve the
following set of equations:

Yy1=0, y1—Yy3=12, Yo —y5=6, Ys—VY5s=7, Ya— VY5 =3

The solutions to these equations are y; = 0,y, = —13,y3 = —12,y, = —16, and y5 =
—19. We now “price out” each nonbasic variable and obtain

Cio=Y1 —Y2—C,=0—-(-13) —10=3 (Satisfies optimality condition for
nonbasic variable at upper bound)
Ciu=VY1—Ya—Ca=0—-(-16) —6 =10 (Satisfies optimality condition for

nonbasic variable at upper bound)
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FIGURE 54
Cycle (3, 4), (4, 5),
(3, 5) Helps Us
Pivot in x;,

Cypp=Y3— Yo, —Cpp=—12—-(-13)— 2= -1 (Satisfies optimality condition for
nonbasic variable at lower bound)
Cay =Y3 — Y4 —Cyy=—-12—-(-16) —3=1 (Violates optimality condition for
nonbasic variable at lower bound)

Because T34 = 1 > 0, each unit by which we increase Xa4 (X4 is at its lower bound, so
it’s okay to increase it) will decrease z by one unit. Thus, we can improve z by entering
X34 into the basis. Note that if a nonbasic variable x;; at its upper bound had ¢;; < 0, then
we could decrease z by entering x;; into the basis and decreasing x;;. We now show that
when solving an MCNFP, the pivot step may be performed almost by inspection.

Pivoting in the Network Simplex

As we have just shown, for the bfs in Figure 53, we want to enter xs4 into the basis. To
do this, note that if we add the arc (3, 4) to the set of arcs corresponding to the current
set of basic variables, a cycle (or loop) will be formed. To enter x34 into the basis, note
that X3, = 0 is at its lower bound, we want to increase Xz4. SUPpPOSe We try to increase Xas4
by 6. The values of all variables after xs4 is entered into the basis may be found by in-
voking the conservation-of-flow constraints. In Figure 54, we find that arc (3, 4), (4, 5),
and (3, 5) form a cycle. After the pivot, all variables corresponding to arcs not in the cy-
cle will remain unchanged, but when we set x3, = 0, the values of the variables corre-
sponding to arcs in the cycle will change. Setting x34 = 6 increases the flow into node 4
by 6, so the flow out of node 4 must increase by 6. This requires x45s = 4 + 6. Because
the flow into node 5 has now increased by 6, conservation of flow requires that xzs =
1 — 6. The pivot leaves all other variables unchanged. To find the new values of the vari-
ables, observe that we want to increase Xz, by as much as possible. We can increase Xs4
to the point where a basic variable first attains its upper or lower bound. Thus, arc (3, 4)
implies that & =< 5; arc (3, 5) requires1 — 6 = 0 or § = 1; arc (4, 5) requires 4 + 6 =
6 or 6 < 2. So the best we can do is set 6 =1. The basic variable that first hits its upper
or lower bound as 6 is increased is chosen to exit the basis (in case of a tie, we can choose
the exiting variable arbitrarily). Now X35 exits the basis, and the new bfs is shown in Fig-
ure 55. The spanning tree corresponding to the current set of basic variables is (1, 3),
(3, 4), (4, 5), and (2, 5). We now compute the coefficient of each nonbasic variable in row
0. To begin, we solve the following set of equations:

y1 = 0, y1 —Yys =12, Y3 — Y4 =3, Yo — Y5 = 6, Ya —Ys =3

This yieldsy; = 0,y, = —12,y3 = —12,y, = —15, and y5 = —18.
The nonbasic variables that currently equal their upper bounds will have row 0 coeffi-
cients of

Cb=0-(-12)-10=2 and Cyu=0-(-15)—-6=29

/I
5_ 7 Q
2
re
ao) (1 1 (3)—1=¢ 5) (-10)
~
AN 9
45~ 4+0
RN
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FIGURE 55
New bfs (0 = 1) After
X3, Enters and x35 Exits
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s
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The nonbasic variables that currently equal their lower bounds will have row 0 coefficients of
Csp = —12 — (-12) — 2 = -2 and Css = —12 — (—18) - 7= -1

(10) (-10)

Because each nonbasic variable at its upper bound has ¢;; = 0, and each nonbasic vari-
able at its lower bound has ¢;; = 0, the current bfs is optimal. Thus, the optimal solution
to the MCNFP in Figure 52 is

Upper bounded variables: X5 =5, X4 = 4
Lower bounded variables: Xz» = X35 = 0
Basic variables: Xi3 = 1,X34 = 1, Xo5 = 5, X45 = 5

Summary of the Network Simplex Method

Step 1 Determine a starting bfs. The n — 1 basic variables will correspond to a spanning
tree. Indicate nonbasic variables at their upper bound by dashed arcs.

Step 2 Compute yy, Yo, . . . Yn (Often called the simplex multipliers) by solving y; = 0,
yi —Y; = c;j for all basic variables x;;. For all nonbasic variables, determine the row 0 co-
efficient ¢;; from C;; = y; — y; — Cij. The current bfs is optimal if ¢;; = 0 for all x;; = Lj
and ¢;; = 0 for all x;; = Uj;. If the bfs is not optimal, choose the nonbasic variable that
most violates the optimality conditions as the entering basic variable.

Step 3 Identify the cycle (there will be exactly one!) created by adding the arc corre-
sponding to the entering variable to the current spanning tree of the current bfs. Use con-
servation of flow to determine the new values of the variables in the cycle. The variable
that exits the basis will be the variable that first hits its upper or lower bound as the value
of the entering basic variable is changed.

Step 4 Find the new bfs by changing the flows of the arcs in the cycle found in step 3.
Now go to step 2.

Example 9 illustrates the network simplex.

Network Simplex Solution to MCNFP

Solution

Use the network simplex to solve the MCNFP in Figure 56.

A bfs requires that we find a spanning tree (three arcs that connect nodes 1, 2, 3, and 4
and do not form a cycle). Any arcs not in the spanning tree may be set equal to their up-
per or lower bound. By trial and error, we find the bfs in Figure 57 involving the span-
ning tree (1, 2), (1, 3), and (2, 4).

To find yy, Yo, Vs, and y, we solve

y1 =0, Y1 — Y2 =4, Yo — Y4 =3, y1 —y3=3

8.7 The Network Simplex Method 463
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FIGURE 56
Example of
Network Simplex

FIGURE 57
bfs for Example 9
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This yieldsy, = 0,y = —4,y3 = —3,and y, = —7. The row 0 coefficients for each
nonbasic variable are

Cy = =3 — (=7) — 6 = —2 (Violates optimality condition)
€= —4 — (—3) — 1= -2 (Satisfies optimality condition)
= -3 —(—4) — 2= —1 (Satisfies optimality condition)

Thus, X34 enters the basis. We set X3, = 5 — 0 and obtain the cycle in Figure 58. From
arc (1, 2),we find5 + 6 = 7o0r 6 = 2. From arc (1, 3), we find5 — 6 =0 or 6 < 5.
From arc (2, 4), we find 5+ 6 =8 or 6 = 3. Fromarc (3, 4), wefind5 — 6 =0o0r 6 <
5. Thus, we can set 6 = 2. Now X4, exits the basis at its upper bound, and xz,4 enters, yield-
ing the bfs in Figure 59.

The new bfs is associated with the spanning tree (1, 3), (2, 4), and (3, 4). Solving for
the new values of the simplex multipliers, we obtain

y1=0, Y1 —V¥3=3, Y3—VY2a=6, Yo—VYs=3

Thisyieldsy; = 0,y, = —6,ys = — 3, y, = —9. The coefficient of each nonbasic vari-
able in row O is given by

Co=0—-(-6)—4=2 (Satisfies optimality condition)
Ca=—-6—-—(-3)—1=-4 (Satisfies optimality condition)
Cxp=—-3—-(-6)—2=1 (Violates optimality condition)

Now X3, enters the basis, yielding the cycle in Figure 60. From arc (2, 4), we find 7 +
6 =< 8or 6 = 1), fromarc (3, 4), we find 3 — 6 = 0 or 6 = 3. From arc (3, 2), we find
6 = 6. So we now set 6 = 1 and have x,4 exit from the basis at its upper bound. The new
bfs is given in Figure 61.

The current set of basic values corresponds to the spanning tree (1, 3), (3, 2), and
(3, 4). The new values of the simplex multipliers are found by solving

Yy1=0, Y1 —V3=3, Ya—VY¥2=2, Y3—VYa=6

which yieldsy, = 0,y, = —5,y3 = —3,y, = —9. The coefficient of each nonbasic vari-
able in row 0 is now

charTER 8 Network Models

o



1091.ch08 5/13/03 1:23 PM Page 465 $

FIGURE 58
Cycle Created When (10) @ (-10)
X34 Enters the Basis

5-0 5-0
_ »

7_- 7
FIGURE 59 el
bfs After x, Exits (10 @ o

and x3, Enters
3 3
7+0

FIGURE 60
Cycle Created When 0 @ (-10)
X3, Enters Basis

FIGURE 61
New bfs When x5,
Enters and x,, Exits

Cz=—-5—-(-3)—-1=-3 (Satisfies optimality condition)

=0—-(-5—-4=1 (Satisfies optimality condition)
Cu=—-5—-(-9-3=1 (Satisfies optimality condition)

Thus, the current bfs is optimal. The optimal solution to the MCNFP is

Basic variables: X13 = 3, X320 = 1, Xaq = 2
Nonbasic variables at their upper bound: X120 = 7, Xou = 8
Nonbasic variable at lower bound: Xo3= 0

The optimal z-value is obtained from

z=7(4) + 3(3) + 1(2) + 8(3) + 2(6) = $75
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PROBLEMS

Group A

1 Consider the problem of finding the shortest path from
node 1 to node 6 in Figure 2.
a Formulate this problem as an MCNFP.

b Find a bfs in which X5, X24, and X4 are positive.
(Hint: A degenerate bfs will be obtained.)

¢ Use the network simplex to find the shortest path
from node 1 to node 6.

2 For the MCNFP in Figure 62, find a bfs.

3 Find the optimal solution to the MCNFP in Figure 63
using the bfs in Figure 64 as a starting basis.

FIGURE 62
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4 Find a bfs for the network in Figure 65.

5 Find the optimal solution to the MCNFP in Figure 66
using the bfs in Figure 67 as a starting basis.

FIGURE 65
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SUMMARY

Shortest-Path Problems

Suppose we want to find the shortest path from node 1 to node j in a network in which
all arcs have nonnegative lengths.

Dijkstra’s Algorithm

1 Label node 1 with a permanent label of 0. Then label each arc connected to node 1
by a single arc with a “temporary” label equal to the length of the arc joining node 1 and
node i. Remaining nodes will have a temporary label of c. Choose the node with the
smallest temporary label and make this label permanent.

2 Suppose that node i is the (k + 1)th node to be given a permanent label. For each node
j that now has a temporary label and is connected to node i by an arc, replace node j’s
temporary label with min {node j’ current temporary label, (node i’s permanent label) +
length of arc (i, j)}. Make the smallest temporary label a permanent label. Continue this
process until all nodes have permanent labels. To find the shortest path from node 1 to
node j, work backward from node j by finding nodes having labels differing by exactly
the length of the connecting arc. If the shortest path from node 1 to node j is desired, stop
the labeling process as soon as node j receives a permanent label.

The Shortest-Path Problem as a Transshipment Problem

To find the shortest path from node 1 to node j, try to minimize the cost of sending one
unit from node 1 to node j (with all other nodes in the network being transshipment
points), where the cost of sending one unit from node k to node k' is the length of arc
(k, k") if such an arc exists and is M (a large positive number) if such an arc does not ex-
ist. As in Section 7.6, the cost of shipping one unit from a node to itself is zero.

Maximum-Flow Problems

We can find the maximum flow from source to sink in a network by linear programming
or by the Ford—Fulkerson method.

Finding Maximum Flow by Linear Programming
Let
Xo = flow through artificial arc going from sink to source

Then to find the maximum flow from source to sink, maximize x, subject to the follow-
ing two sets of constraints:

1 The flow through each arc must be nonnegative and cannot exceed the arc capacity.

2 Flow into node i = flow out of node i (Conservation of flow)

Finding Maximum Flow by the Ford-Fulkerson Method
Let

I = set of arcs in which flow may be increased
set of arcs in which flow may be reduced

pu)
Il
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Step 1 Find a feasible flow (setting each arc’s flow to zero will do).

Step 2 Using the following procedure, try to find a chain of labeled arcs and nodes that
can be used to label the sink. Label the source. Then label vertices and arcs (except for
arc ag) according to the following rules: (1) If vertex x is labeled, then vertex y is unla-
beled and arc (x, y) is a member of I; then label vertex y and arc (x, y). Arc (x, y) is called
a forward arc. (2) If vertex y is unlabeled, then vertex x is labeled and arc (y, X) is a
member of R; then label vertex y and arc (y, x). Arc (y, X) is called a backward arc.

If the sink cannot be labeled, the current feasible flow is a maximum flow; if the sink
is labeled, go on to step 3.

Step 3 If the chain used to label the sink consists entirely of forward arcs, the flow
through each of the forward arcs in the chain may be increased, thereby increasing the
flow from source to sink. If the chain used to label the sink consists of both forward and
backward arcs, increase the flow in each forward arc in the chain and decrease the flow
in each backward arc in the chain. Again, this will increase the flow from source to sink.
Return to step 2.

Critical Path Method

Assuming the duration of each activity is known, the critical path method (CPM) may be
used to find the duration of a project.

Rules for Constructing an AOA Project Diagram

1 Node 1 represents the start of the project. An arc should lead from node 1 to repre-
sent each activity that has no predecessors.

2 A node (called the finish node) representing the completion of the project should be
included in the network.

3 Number the nodes in the network so that the node representing the completion of an
activity always has a larger number than the node representing the beginning of an activ-
ity (there may be more than one numbering scheme that satisfies rule 3).

4 An activity should not be represented by more than one arc in the network.
5 Two nodes can be connected by at most one arc.

To avoid violating rules 4 and 5, it is sometimes necessary to utilize a dummy activity
that takes zero time.

Computation of Early Event Time

The early event time for node i, denoted ET(i), is the earliest time at which the event cor-
responding to node i can occur. We compute ET(i) as follows:

Step 1 Find each prior event to node i that is connected by an arc to node i. These events
are the immediate predecessors of node i.

Step 2 To the ET for each immediate predecessor of node i, add the duration of the ac-
tivity connecting the immediate predecessor to node i.

Step 3 ET(i) equals the maximum of the sums computed in step 2.
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Computation of Late Event Time

The late event time for node i, denoted LT(i), is the latest time at which the event corre-
sponding to node i can occur without delaying the completion of the project. We compute
LT(i) as follows:

Step 1 Find each node that occurs after node i and is connected to node i by an arc. These
events are the immediate successors of node i.

Step 2 From the LT for each immediate successor to node i, subtract the duration of the
activity joining the successor to node i.

Step 3 LT(i) is the smallest of the differences determined in step 2.

Total Float

For an arbitrary arc representing activity (i, j), the total float (denoted TF(i, j) of the ac-
tivity represented by (i, j) is the amount by which the starting time of activity (i, j) could
be delayed beyond its earliest possible starting time without delaying the completion of
the project (assuming no other activities are delayed):

TF(i, j) = LT(j) — ET(i) — t; [t;j = duration of activity represented by arc (i, j)]

Any activity with a total float of zero is a critical activity. A path from node 1 to the fin-
ish node that consists entirely of critical activities is called a critical path. Any critical
path (there may be more than one in a project network) is the longest path in the network
from the start node (node 1) to the finish node. If the start of a critical activity is delayed,
or if the duration of a critical activity is longer than expected, then the completion of the
project will be delayed.

Free Float

The free float of the activity corresponding to arc (i, ), denoted by FF(i, j), is the amount
by which the starting time of the activity corresponding to arc (i, j) (or the duration of the
activity) can be delayed without delaying the start of any later activity beyond its earliest
possible starting time:
FEQ, J) = ET()) — ET®) — t;
Linear programming can be used to find a critical path and the duration of the project.
Let
X; = time at which node j in project network occurs
F = node representing finish or completion of the project
To find a critical path, minimize z = xg — X; subject to
i =X+t or x;—x =t; foreacharc
Xj urs
The optimal objective function value is the length of any critical path (or time to project
completion). To find a critical path, simply find a path from node 1 to node F for which
each arc in the path is represented by an arc (i, j) whose constraint (x; — x; = t;;) has a
dual price of —1.

Linear programming can also be used to determine the minimum-cost method of re-
ducing the duration of activities (crashing) to meet a project completion deadline.
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PERT

If the durations of the project’s activities are not known with certainty, then PERT may
be used to estimate the probability that the project will be completed in a specified amount
of time. PERT requires that for each activity the following three numbers be specified:

a = estimate of the activity’s duration under the most favorable conditions

b = estimate of the activity’s duration under the least favorable conditions

m = most likely value for the activity’s duration

If the estimates a, b, and m refer to the activity represented by arc (i, j), then Tj; is the
random variable representing the duration of the activity represented by arc (i, j). Tj; has
(approximately) the following properties:

a+ 4m +b
E(Ty) = g

Then

Z E(Ty;) = expected duration of activities on any path
(i, j)Epath

varT;; = variance of duration of activities on any path
(i, j)Epath

Assuming (sometimes incorrectly) that the critical path found by CPM is the critical path,
and assuming that the duration of the critical path is normally distributed, the preceding
equations may be used to estimate the probability that the project will be completed
within any specified length of time.

Minimum-Cost Network Flow Problems

The transportation, assignment, transshipment, shortest-path, maximum-flow, and critical
path problems are all special cases of the minimum-cost network flow problem (MCNFP).
Xij = number of units of flow sent from node i to node j through arc (i, j)
b; = net supply (outflow — inflow) at node i
cij = cost of transporting one unit of flow from node i to node j via arc (i, j)
Li; = lower bound on flow through arc (i, j) (if there is no lower bound, let L;; = 0)
Uj; = upper bound on flow through arc (i, j) (if there is no upper bound, let U;; = =)

Then an MCNFP may be written as

min Z Cij Xij
all arcs

st. > Xj — > Xq=b; (for each node i in the network)
f K
Lij = xij = Uj (for each arc in the network)

The first set of constraints are the flow balance equations, and the second set of con-
straints express limitations on arc capacities.
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Any MCNFP may be solved by a computer code using the network simplex; the user
need only input the nodes and arcs in the network, the c;’s and arc capacity for each arc,
and the b;’ for each node. Formulation of a problem as an MCNFP may require adding
a dummy point to the problem.

Minimum Spanning Tree Problems

The following method (MST algorithm) may be used to find a minimum spanning tree
for a network:

Step 1 Begin at any node i, and join node i to the node in the network (node j) that is
closest to node i. The two nodes i and j now form a connected set of nodes C = {i, j}
and arc (i, j) will be in the minimum spanning tree. The remaining nodes in the network
(C") are the unconnected set of nodes.

Step 2 Choose a member of C’(n) that is closest to some node in C. Let m represent the
node in C that is closest to n. Then the arc (m, n) will be in the minimum spanning tree.
Update C and C'. Because n is now connected to {i, j}, C now equals {i, j, n}, and we
must eliminate node n from C'.

Step 3 Repeat this process until a minimum spanning tree is found. Ties for closest node
and arc may be broken arbitrarily.

Network Simplex Method

Step 1 Determine a starting bfs. The n — 1 basic variables will correspond to a spanning
tree. Indicate nonbasic variables at their upper bound by dashed arcs.

Step 2 Compute yq, Yo, . . . Y, (Often called the simplex multipliers) by solving y; = 0,
yi —Y; = ¢ for all basic variables x;;. For all nonbasic variables, determine the row 0 co-
efficient ¢;; from C;; = y; — y; — ¢jj. The current bfs is optimal if ¢;; = 0 for all x;; = Lj
and ¢; = 0 for all x;; = Uy;. If the bfs is not optimal, then choose the nonbasic variable
that most violates the optimality conditions as the entering basic variable.

Step 3 Identify the cycle (there will be exactly one!) created by adding the arc corre-
sponding to the entering variable to the current spanning tree of the current bfs. Use con-
servation of flow to determine the new values of the variables in the cycle. The variable
that first hits its upper or lower bound as the value of the entering basic variable is
changed exits the basis.

Step 4 Find the new bfs by changing the flows of the arcs in the cycle found in step 3.
Go to step 2.

REVIEW PROBLEMS

Group A

1 A truck must travel from New York to Los Angeles. As
shown in Figure 68, a variety of routes are available. The
number associated with each arc is the number of gallons
of fuel required by the truck to traverse the arc.

a Use Dijkstra’s algorithm to find the route from New
York to Los Angeles that uses the minimum amount of gas.

o

b Formulate a balanced transportation problem that
could be used to find the route from New York to Los
Angeles that uses the minimum amount of gas.

¢ Formulate as an MCNFP the problem of finding the
New York to Los Angeles route that uses the minimum
amount of gas.
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FIGURE 68
Network for Problem 1

2 Telephone calls from New York to Los Angeles are
transported as follows: The call is sent first to either Chicago
or Memphis, then routed through either Denver or Dallas,
and finally sent to Los Angeles. The number of phone lines
joining each pair of cities is shown in Table 39.
a Formulate an LP that can be used to determine the
maximum number of calls that can be sent from New
York to Los Angeles at any given time.
b Use the Ford—Fulkerson method to determine the
maximum number of calls that can be sent from New
York to Los Angeles at any given time.

TABLE 39

No. of Telephone

Los
Angeles

3 Before a new product can be introduced, the activities in
Table 40 must be completed (all times are in weeks).
a Draw the project diagram.
b Determine all critical paths and critical activities.
¢ Determine the total float and free float for each
activity.
d Setup an LP that can be used to determine the crit-
ical path.
e Formulate an MCNFP that can be used to find the
critical path.
f It is now 12 weeks before Christmas. What is the
probability that the product will be in the stores before
Christmas?
g The duration of each activity can be reduced by up
to 2 weeks at the following cost per week: A, $80; B,

Cities Lines $60; C, $30; D, $60; E, $40; F, $30; G, $20. Assuming

N.Y.—Chicago 500 that the duration of each activity is known with cer-

N.Y.~Memphis 400 tainty, formulate an LP that will minimize the cost of

Chicago-Denver 300 getting the product into the stores by Christmas.

Chicago-Dallas 250 4 During the next three months, Shoemakers, Inc. must meet

. (on time) the following demands for shoes: month 1, 1,000

Memph!s Denver 200 pairs; month 2, 1,500 pairs; month 3, 1,800 pairs. It takes 1

Memphis-Dallas 150 hour of labor to produce a pair of shoes. During each of the

Denver-L.A. 400 next three months, the following number of regular-time labor

Dallas-L.A. 350 hours are available: month 1, 1,000 hours; month 2, 1,200
hours; month 3, 1,200 hours. Each month, the company can
require workers to put in up to 400 hours of overtime. Workers

TABLE 40

Activity Description Predecessors Duration a b m

A Design the product — 6 2 10 6

B Survey the market — 5 4 6 5

C Place orders for raw materials A 3 2 4 3

D Receive raw materials C 2 1 3 2

E Build prototype of product A D 3 1 5 3

F Develop ad campaign B 2 3 5 4

G Set up plan for mass production E 4 2 6 4

H Deliver product to stores G, F 2 0 4 2
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are paid only for the hours they work, and a worker receives
$4 per hour for regular-time work and $6 per hour for overtime
work. At the end of each month, a holding cost of $1.50 per
pair of shoes is incurred. Formulate an MCNFP that can be
used to minimize the total cost incurred in meeting the
demands of the next three months. A formulation requires
drawing the appropriate network and determining the c;;’s, b;’s,
and arc capacities. How would you modify your answer if
demand could be backlogged (all demand must still be met by
the end of month 3) at a cost of $20/pair/month?

5 Find a minimum spanning tree for the network in Figure 68.

6 A company produces a product at two plants, 1 and 2.
The unit production cost and production capacity during
each period are given in Table 41. The product is
instantaneously shipped to the company’s only customer
according to the unit shipping costs given in Table 42. If a
unit is produced and shipped during period 1, it can still be
used to meet a period 2 demand, but a holding cost of $13
per unit in inventory is assessed. At the end of period 1, at
most six units may be held in inventory. Demands are as
follows: period 1, 9; period 2, 11. Formulate an MCNFP
that can be used to minimize the cost of meeting all demands
on time. Draw the network and determine the net outflow at
each node, the arc capacities, and shipping costs.

7 A projectis considered completed when activities A-F have
all been completed. The duration and predecessors of each
activity are given in Table 43. The LINDO output in Figure 69
can be used to determine the critical path for this project.
a Use the LINDO output to draw the project network.
Indicate the activity represented by each arc.
b Determine a critical path in the network. What is the
earliest the project can be completed?

8" State University has three professors who each teach
four courses per year. Each year, four sections of marketing,
finance, and production must be offered. At least one section
of each class must be offered during each semester (fall and
spring). Each professor’s time preference and preference for
teaching various courses are given in Table 44.

TABLE 41

Unit Production

Cost ($) Capacity
Plant 1 (period 1) 33 7
Plant 1 (period 2) 43 4
Plant 2 (period 1) 30 9
Plant 2 (period 2) 41 9
TABLE 42
Period 1 Period 2

Plant 1 to customer $51 $60

Plant 2 to customer $42 $71

"Based on Mulvey (1979).

—p—

FIGURE 69

MIN X6 - X1
SUBJECT TO
2) - X1 +X3>= 3
3) X4 -X2>= 1
4) - X3 + X4 >= 0
5) - X4 + X5 >= 7
6) - X3 + X5 >= 5
7) X6 - X5 >= 5
8) X3 -X2> 0
+ 2

X2 >=
END

LP OPTIMUM FOUND AT STEP 3

OBJECTIVE FUNCTION VALUE

1) 15.0000000

VARIABLE VALUE REDUCED COST
X6 15.000000 0.000000
X1 0.000000 0.000000
X3 3.000000 0.000000
X4 3.000000 0.000000
X2 2.000000 0.000000
X5 10.000000 0.000000

ROW SLACK OR SURPLUS DUAL PRICES
2) 0.000000 -1.000000
3) 0.000000 0.000000
1) 0.000000 -1.000000
5) 0.000000 -1.000000
6) 2.000000 0.000000
7) 0.000000 -1.000000
8) 1.000000 0.000000
9) 0.000000 0.000000

NO. ITERATIONS= 3

TABLE 43

Immediate

Activity Duration Predecessors

A 2 —

B 3 —

C 1 A

D 5 A, B

E 7 B, C

F 5 D, E

The total satisfaction a professor earns teaching a class is
the sum of the semester satisfaction and the course satisfaction.
Thus, professor 1 derives a satisfaction of 3 + 6 = 9 from
teaching marketing during the fall semester. Formulate an
MCNFP that can be used to assign professors to courses so as
to maximize the total satisfaction of the three professors.

Group B

9" During the next two months, Machineco must meet (on
time) the demands for three types of products shown in
Table 45. Two machines are available to produce these

"This problem is based on Brown, Geoffrion, and Bradley (1981).
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TABLE 44

Professor 1 Professor 2 Professor 3
Fall Preference 3 5 4
Spring Preference 4 3 4
Marketing 6 4 5
Finance 5 6 4
Production 4 5 6

TABLE 45

Month Product 1 Product 2 Product 3
1 50 units 70 units 80 units
2 60 units 90 units 120 units

—p—

products. Machine 1 can only produce products 1 and 2, and
machine 2 can only produce products 2 and 3. Each machine
can be used for up to 40 hours per month. Table 46 shows
the time required to produce one unit of each product
(independent of the type of machine); the cost of producing
one unit of each product on each type of machine; and the
cost of holding one unit of each product in inventory for one
month. Formulate an MCNFP that could be used to minimize
the total cost of meeting all demands on time.

TABLE 46

Production Cost ($)

Production Holding
Product Time (minutes) Machine 1 Machine 2 Cost (S)
1 30 40 — 15
2 20 45 60 10
3 15 — 55 5
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