
PROBLEM SESSION

DESCENT TECHNIQUES IN MODULAR
REPRESENTATION THEORY

PAUL BALMER

All rings are associative and unital. All modules are left modules.

1. lecture

Let R be a commutative ring.

Problem 1.1 (Separable algebras). Let R→ A be an algebra over the
commutative ring R. Show that the following are equivalent:

(1) A is projective as Ae-module, where Ae := A ⊗R A
op denotes

the enveloping algebra, and the action is (a⊗ a′) · x := axa′.
(2) There exists an element c ∈ A⊗R A such that µ(c) = 1 (where

µ : A ⊗R A → A is multiplication) and (a ⊗ 1) · c = c · (1 ⊗ a)
for all a ∈ A.

(3) The multiplication map µ : A⊗R A→ A has a section σ which
is A-bilinear.

Problem 1.2. Suppose that R = Rs1 + . . .+Rsn, i.e., that Spec(R) =
D(s1)∪· · ·∪D(sn), where D(s) := {p ∈ Spec(R) | s 6∈ p} is the Zariski
open subset associated to the element s ∈ R. Let A := Rs1 × · · · ×
Rsn , where Rs := R[1

s
] := { r

sn
| r ∈ R, n ∈ N}/( r

sn
∼ t

sm
:⇔ ∃ ` ∈

N with rsm+` = tsn+`) is the commutative ring obtained from R by
formally inverting s. “Expand” descent theory for A over R. Show
that A satisfies descent.

Let AG
H = (k(G/H), µ, η) be as defined in the lecture.

Problem 1.3. Show that AG
H is a ring object and that it is commuta-

tive and separable (!).

Problem 1.4. Show that for a separable ring object (or monad) A,
every A-module is “projective”, i.e., a direct summand of a free module.
In other words, show that the inclusion functor A-FreeC ↪→ A-ModC is
“⊕-dense”.

Problem 1.5 (The idempotent completion). Define the idempotent
completion A\ of an additive category A and study its basic properties:

(1) A\ can be defined by the following construction, due to Karoubi.
Its objects are pairs (x, e), where x is an object of A and e =
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e2 : x → x an idempotent morphism. The Hom sets are the
subgroups

HomA\((x, e), (y, f)) := f ◦ HomA(x, y) ◦ e = {ϕ | fϕ = ϕ = ϕe}
of HomA(x, y). (That is: show that this yields a well-defined
idempotent complete additive category A\).

(2) The assignment x 7→ (x, 1x) extends to a fully faithful additive
functor ιA : A → A\.

(3) The assignment A 7→ A\ extends to a functor (−)\ : Add →
Addic from the category of (small) additive categories to that
of (small) idempotent complete additive categories.

(4) The idempotent completion is characterized, up to equivalence,
by the following (2-)universal property: for every idempotent
complete additive category B, pre-composition with ιA induces
an equivalence of categories

(ιA)∗ : Funadd(A\,B)
∼−→ Funadd(A,B) .

(here Funadd denotes the category of additive functors and nat-
ural transformations between them).

(5) (−)\ is almost (but not quite!) left adjoint to Addic
forget→ Add.

Let H 6 G be finite groups.

Problem 1.6. When is the unit η : k → AG
H retracted in kG-Mod?

Say, for k a field of characteristic p > 0. What about in kG-Stab?

Problem 1.7. Let M be the monad associated with the adjunction

kG-Mod

ResGH
��

kH-Mod

IndGH (as right adjoint!)

UU

(i.e.: M = IndG
H ◦ ResGH , η = unit of adjunction, µ = IndG

H εResGH).
Check that µ : M2 →M identifies with the product µ : AG

H⊗kA
G
H → AG

H

(as defined in the lecture) under the usual “Frobenius” isomorphism
Ind ◦ Res ∼= AG

H ⊗k (−) given by

kG⊗kH ResGHV
∼−→ k(G/H)⊗k V , g ⊗ v 7→ [g]⊗ gv

for all V ∈ kG-Mod.

Problem 1.8 (Orbit decomposition of pullbacks). Let K1, K2 6 H 6
G be finite groups. Prove the Mackey formula for pullbacks, i.e., show
that every choice of a full set S ⊂ H of representatives for K1\H/K2

defines an isomorphism of left G-sets∐
t∈S

G/(t−1K1t ∩ K2)
∼−→ (G/K1)×G/H (G/K2)

via the map [g] 7→ ([gt−1], [g]).


