PROBLEM SESSION

DESCENT TECHNIQUES IN MODULAR REPRESENTATION THEORY

PAUL BALMER

All rings are associative and unital. All modules are left modules.

1. Lecture

Let R be a commutative ring.

Problem 1.1 (Separable algebras). Let $R \to A$ be an algebra over the commutative ring R. Show that the following are equivalent:

- (1) A is projective as A^e -module, where $A^e := A \otimes_R A^{\text{op}}$ denotes the enveloping algebra, and the action is $(a \otimes a') \cdot x := axa'$.
- (2) There exists an element $c \in A \otimes_R A$ such that $\mu(c) = 1$ (where $\mu: A \otimes_R A \to A$ is multiplication) and $(a \otimes 1) \cdot c = c \cdot (1 \otimes a)$ for all $a \in A$.
- (3) The multiplication map $\mu: A \otimes_R A \to A$ has a section σ which is A-bilinear.

Problem 1.2. Suppose that $R = Rs_1 + \ldots + Rs_n$, i.e., that $\text{Spec}(R) = D(s_1) \cup \cdots \cup D(s_n)$, where $D(s) := \{\mathfrak{p} \in \text{Spec}(R) \mid s \notin \mathfrak{p}\}$ is the Zariski open subset associated to the element $s \in R$. Let $A := R_{s_1} \times \cdots \times R_{s_n}$, where $R_s := R[\frac{1}{s}] := \{\frac{r}{s^n} \mid r \in R, n \in \mathbb{N}\}/(\frac{r}{s^n} \sim \frac{t}{s^m} : \Leftrightarrow \exists \ell \in \mathbb{N} \text{ with } rs^{m+\ell} = ts^{n+\ell})$ is the commutative ring obtained from R by formally inverting s. "Expand" descent theory for A over R. Show that A satisfies descent.

Let $A_H^G = (k(G/H), \mu, \eta)$ be as defined in the lecture.

Problem 1.3. Show that A_H^G is a ring object and that it is commutative and separable (!).

Problem 1.4. Show that for a *separable* ring object (or monad) A, every A-module is "projective", i.e., a direct summand of a free module. In other words, show that the inclusion functor A-Free_{\mathcal{C}} \hookrightarrow A-Mod_{\mathcal{C}} is " \oplus -dense".

Problem 1.5 (The idempotent completion). Define the idempotent completion \mathcal{A}^{\natural} of an additive category \mathcal{A} and study its basic properties:

(1) \mathcal{A}^{\natural} can be defined by the following construction, due to Karoubi. Its objects are pairs (x, e), where x is an object of \mathcal{A} and e =

PAUL BALMER

 $e^2 \colon x \to x$ an idempotent morphism. The Hom sets are the subgroups

$$\operatorname{Hom}_{\mathcal{A}^{\natural}}((x,e),(y,f)) := f \circ \operatorname{Hom}_{\mathcal{A}}(x,y) \circ e = \{\varphi \mid f\varphi = \varphi = \varphi e\}$$

of $\operatorname{Hom}_{\mathcal{A}}(x, y)$. (That is: show that this yields a well-defined idempotent complete additive category \mathcal{A}^{\natural}).

- (2) The assignment $x \mapsto (x, 1_x)$ extends to a fully faithful additive functor $\iota_{\mathcal{A}} \colon \mathcal{A} \to \mathcal{A}^{\natural}$.
- (3) The assignment $\mathcal{A} \mapsto \mathcal{A}^{\natural}$ extends to a functor $(-)^{\natural}$: Add \rightarrow Add_{ic} from the category of (small) additive categories to that of (small) idempotent complete additive categories.
- (4) The idempotent completion is characterized, up to equivalence, by the following (2-)universal property: for every idempotent complete additive category \mathcal{B} , pre-composition with $\iota_{\mathcal{A}}$ induces an equivalence of categories

$$(\iota_{\mathcal{A}})^* \colon \operatorname{Fun}_{\operatorname{add}}(\mathcal{A}^{\natural}, \mathcal{B}) \xrightarrow{\sim} \operatorname{Fun}_{\operatorname{add}}(\mathcal{A}, \mathcal{B}).$$

(here $\operatorname{Fun}_{\mathrm{add}}$ denotes the category of additive functors and natural transformations between them).

(5) $(-)^{\natural}$ is almost (but not quite!) left adjoint to $\operatorname{Add}_{ic} \xrightarrow{\text{forget}} \operatorname{Add}$.

Let $H \leq G$ be finite groups.

Problem 1.6. When is the unit $\eta: k \to A_H^G$ retracted in kG-Mod? Say, for k a field of characteristic p > 0. What about in kG-Stab?

Problem 1.7. Let M be the monad associated with the adjunction

$$kG$$
-Mod
 $\operatorname{Res}_{H}^{G}\left(\right)$ Ind_{H}^{G} (as right adjoint!)
 kH -Mod

(i.e.: $M = \operatorname{Ind}_{H}^{G} \circ \operatorname{Res}_{H}^{G}, \eta = \text{unit of adjunction}, \mu = \operatorname{Ind}_{H}^{G} \varepsilon \operatorname{Res}_{H}^{G}$). Check that $\mu \colon M^{2} \to M$ identifies with the product $\mu \colon A_{H}^{G} \otimes_{k} A_{H}^{G} \to A_{H}^{G}$ (as defined in the lecture) under the usual "Frobenius" isomorphism Ind $\circ \operatorname{Res} \cong A_{H}^{G} \otimes_{k} (-)$ given by

$$kG \otimes_{kH} \operatorname{Res}_{H}^{G} V \xrightarrow{\sim} k(G/H) \otimes_{k} V \quad , \quad g \otimes v \mapsto [g] \otimes gv$$

for all $V \in kG$ -Mod.

Problem 1.8 (Orbit decomposition of pullbacks). Let $K_1, K_2 \leq H \leq G$ be finite groups. Prove the Mackey formula for pullbacks, i.e., show that every choice of a full set $S \subset H$ of representatives for $K_1 \setminus H/K_2$ defines an isomorphism of left *G*-sets

$$\prod_{t \in S} G/(t^{-1}K_1t \cap K_2) \xrightarrow{\sim} (G/K_1) \times_{G/H} (G/K_2)$$

via the map $[g] \mapsto ([gt^{-1}], [g])$.