PROBLEM SESSION

DESCENT TECHNIQUES IN MODULAR

 REPRESENTATION THEORYPAUL BALMER

All rings are associative and unital. All modules are left modules.

1. LECTURE

Let R be a commutative ring.
Problem 1.1 (Separable algebras). Let $R \rightarrow A$ be an algebra over the commutative ring R. Show that the following are equivalent:
(1) A is projective as A^{e}-module, where $A^{e}:=A \otimes_{R} A^{\text {op }}$ denotes the enveloping algebra, and the action is $\left(a \otimes a^{\prime}\right) \cdot x:=a x a^{\prime}$.
(2) There exists an element $c \in A \otimes_{R} A$ such that $\mu(c)=1$ (where $\mu: A \otimes_{R} A \rightarrow A$ is multiplication $)$ and $(a \otimes 1) \cdot c=c \cdot(1 \otimes a)$ for all $a \in A$.
(3) The multiplication map $\mu: A \otimes_{R} A \rightarrow A$ has a section σ which is A-bilinear.

Problem 1.2. Suppose that $R=R s_{1}+\ldots+R s_{n}$, i.e., that $\operatorname{Spec}(R)=$ $D\left(s_{1}\right) \cup \cdots \cup D\left(s_{n}\right)$, where $D(s):=\{\mathfrak{p} \in \operatorname{Spec}(R) \mid s \notin \mathfrak{p}\}$ is the Zariski open subset associated to the element $s \in R$. Let $A:=R_{s_{1}} \times \cdots \times$ $R_{s_{n}}$, where $R_{s}:=R\left[\frac{1}{s}\right]:=\left\{\left.\frac{r}{s^{n}} \right\rvert\, r \in R, n \in \mathbb{N}\right\} /\left(\frac{r}{s^{n}} \sim \frac{t}{s^{m}}: \Leftrightarrow \exists \ell \in\right.$ \mathbb{N} with $r s^{m+\ell}=t s^{n+\ell}$) is the commutative ring obtained from R by formally inverting s. "Expand" descent theory for A over R. Show that A satisfies descent.

Let $A_{H}^{G}=(k(G / H), \mu, \eta)$ be as defined in the lecture.
Problem 1.3. Show that A_{H}^{G} is a ring object and that it is commutative and separable (!).

Problem 1.4. Show that for a separable ring object (or monad) A, every A-module is "projective", i.e., a direct summand of a free module. In other words, show that the inclusion functor $A-$ Free $_{\mathcal{C}} \hookrightarrow A-\operatorname{Mod}_{\mathcal{C}}$ is " \oplus-dense".

Problem 1.5 (The idempotent completion). Define the idempotent completion \mathcal{A}^{\natural} of an additive category \mathcal{A} and study its basic properties:
(1) \mathcal{A}^{\natural} can be defined by the following construction, due to Karoubi. Its objects are pairs (x, e), where x is an object of \mathcal{A} and $e=$
$e^{2}: x \rightarrow x$ an idempotent morphism. The Hom sets are the subgroups
$\operatorname{Hom}_{\mathcal{A}^{\natural}}((x, e),(y, f)):=f \circ \operatorname{Hom}_{\mathcal{A}}(x, y) \circ e=\{\varphi \mid f \varphi=\varphi=\varphi e\}$ of $\operatorname{Hom}_{\mathcal{A}}(x, y)$. (That is: show that this yields a well-defined idempotent complete additive category \mathcal{A}^{\natural}).
(2) The assignment $x \mapsto\left(x, 1_{x}\right)$ extends to a fully faithful additive functor $\iota_{\mathcal{A}}: \mathcal{A} \rightarrow \mathcal{A}^{\natural}$.
(3) The assignment $\mathcal{A} \mapsto \mathcal{A}^{\natural}$ extends to a functor (-$)^{\natural}$: Add \rightarrow $\operatorname{Add}_{i c}$ from the category of (small) additive categories to that of (small) idempotent complete additive categories.
(4) The idempotent completion is characterized, up to equivalence, by the following (2-)universal property: for every idempotent complete additive category \mathcal{B}, pre-composition with $\iota_{\mathcal{A}}$ induces an equivalence of categories

$$
\left(\iota_{\mathcal{A}}\right)^{*}: \operatorname{Fun}_{\text {add }}\left(\mathcal{A}^{\natural}, \mathcal{B}\right) \xrightarrow{\sim} \operatorname{Fun}_{\mathrm{add}}(\mathcal{A}, \mathcal{B}) .
$$

(here $\mathrm{Fun}_{\text {add }}$ denotes the category of additive functors and natural transformations between them).
(5) $(-)^{\text {घ }}$ is almost (but not quite!) left adjoint to $\operatorname{Add}_{i c} \xrightarrow{\text { forget }}$ Add.

Let $H \leqslant G$ be finite groups.
Problem 1.6. When is the unit $\eta: k \rightarrow A_{H}^{G}$ retracted in $k G$-Mod? Say, for k a field of characteristic $p>0$. What about in $k G$-Stab?
Problem 1.7. Let M be the monad associated with the adjunction

$$
\begin{aligned}
& k G \text {-Mod } \\
& \operatorname{Res}_{H}^{G} \\
& k H-\operatorname{Mod}
\end{aligned}
$$

(i.e.: $M=\operatorname{Ind}_{H}^{G} \circ \operatorname{Res}_{H}^{G}, \eta=$ unit of adjunction, $\mu=\operatorname{Ind}_{H}^{G} \varepsilon \operatorname{Res}_{H}^{G}$). Check that $\mu: M^{2} \rightarrow M$ identifies with the product $\mu: A_{H}^{G} \otimes_{k} A_{H}^{G} \rightarrow A_{H}^{G}$ (as defined in the lecture) under the usual "Frobenius" isomorphism Ind $\circ \operatorname{Res} \cong A_{H}^{G} \otimes_{k}(-)$ given by

$$
k G \otimes_{k H} \operatorname{Res}_{H}^{G} V \xrightarrow{\sim} k(G / H) \otimes_{k} V \quad, \quad g \otimes v \mapsto[g] \otimes g v
$$

for all $V \in k G$-Mod.
Problem 1.8 (Orbit decomposition of pullbacks). Let $K_{1}, K_{2} \leqslant H \leqslant$ G be finite groups. Prove the Mackey formula for pullbacks, i.e., show that every choice of a full set $S \subset H$ of representatives for $K_{1} \backslash H / K_{2}$ defines an isomorphism of left G-sets

$$
\coprod_{t \in S} G /\left(t^{-1} K_{1} t \cap K_{2}\right) \xrightarrow{\sim}\left(G / K_{1}\right) \times_{G / H}\left(G / K_{2}\right)
$$

via the map $[g] \mapsto\left(\left[g t^{-1}\right],[g]\right)$.

