PROBLEM SESSION

DESCENT TECHNIQUES IN MODULAR REPRESENTATION THEORY

PAUL BALMER

2. Lecture

Problem 2.1. Let X be a topological space and let $\mathcal{G} := \mathcal{O}(X)$ be the category with objects the open subsets of X and with morphisms the inclusions between them:

$$\operatorname{Hom}_{\mathcal{O}(X)}(U,V) = \begin{cases} \{U \to V\} & \text{if } U \subseteq V \\ \emptyset & \text{if } U \not\subseteq V. \end{cases}$$

Define a family of morphisms $\{U_i \to U\}_{i \in I}$ in $\mathcal{O}(X)$ to be a *cover*ing if their domains cover their common target, in the usual sense: $U = \bigcup_{i=I} U_i$. Verify that these covering families form a Grothendieck topology on $\mathcal{O}(X)$:

- (1) $\{U \xrightarrow{\sim} V\}$ is a covering for every isomorphism $U \xrightarrow{\sim} V$.
- (2) The pullbacks $\{U_i \times_U V \to V\}_{i \in I}$ (taken in $\mathcal{O}(X)$!) of a covering $\{U_i \to U\}_{i \in I}$ along any morphism $V \to U$ form a covering.
- (3) If $\{U_i \to V\}_{i \in I}$ and $\{V_{ij} \to U_i\}_{j \in J_i}$ $(i \in I)$ are coverings then the compositions $\{V_{ij} \to U\}_{i \in I, j \in J_i}$ form a covering.

Now verify that a presheaf on X is the same as a functor $\mathcal{O}(X)^{\mathrm{op}} \to$ Set, and that a sheaf on X is the same as a sheaf on $\mathcal{O}(X)$, as in the general definition for sites with pullbacks (ask!).

Problem 2.2. Finish the verification that the *sipp topology* on $\mathcal{G} := G$ -Set is indeed a Grothendieck topology (cf. the second lecture).

Problem 2.3. Show that $X \in G$ -Set is *local* in the sipp topology (meaning: for every sipp covering family $\{Y_i \to X\}_i$ one of the $Y_i \to X$ admits a section) if and only if $X \cong G/H$ with H a p-group. Thus H is a p-Sylow of G iff $G/H \to G/G$ is a sipp covering by a local object.

Problem 2.4 (Action groupoid). Let X be a left G-set. Verify the soundness of the following definition: the *action groupoid* $G \ltimes X$ is the category (in fact, a groupoid) with the elements of X as objects and with morphisms given by

$$\operatorname{Hom}_{G \ltimes X}(x, x') := \{g \in G \mid gx = x'\}.$$

Show that $\operatorname{Rep}_k(X)$ (as defined in the lecture) is the category $k\operatorname{-Mod}^{G \ltimes X}$ of (covariant) functors from $G \ltimes X$ to $k\operatorname{-Mod}$.

Problem 2.5. Let $H \leq G$. Show that the group H (seen as the category with one object * whose automorphism group Aut(*) is H) is equivalent to the action groupoid $G \ltimes G/H$, via the functor $\iota_H : * \mapsto [1]$. Deduce an equivalence $(\iota_H)^* : \operatorname{Rep}(G/H) \xrightarrow{\sim} kH$ -Mod, and observe that this is the equivalence mentioned in the course.

Problem 2.6. Recall (or ask!) what the derived category and the stable categories are.

Problem 2.7. For $K \leq H \leq G$, show that the following diagram commutes:

where $\alpha: G/K \to G/H$, $[g] \mapsto [g]$, is the *G*-map induced by $K \subseteq H$. (The notations $\mathcal{C}(\cdots), \underline{\mathcal{C}}(\cdots)$ and $(\cdots)^*$ are as in the lecture.)

Problem 2.8. For ${}^{g}K := gKg^{-1} \leqslant H \leqslant G$, show that the square

$$\underline{\mathcal{C}}(G/H) \xrightarrow{\iota_{H}^{*}} \mathcal{C}(H)$$

$$\beta_{g}^{*} \bigvee_{g \in \mathcal{G}} \overset{\omega^{(g)}}{\longrightarrow} \bigvee_{g \in \mathcal{R}_{K}} \overset{\psi^{(g)}}{\longrightarrow} \mathcal{C}(K)$$

commutes ("only") up to an isomorphism $\omega^{(g)} : i_K^* \circ \beta_g^* \xrightarrow{\sim} {}^g \operatorname{Res}_K^H \circ i_H^*$ of functors, as indicated by the diagonal arrow. Here β_g denotes the G-map $G/K \to G/H$ given by $[x] \mapsto [xg^{-1}]$, and ${}^g\operatorname{Res}_K^H(V)$ is the "twisted restriction" of the kH-module V, with K-action $k \cdot v := {}^g kv$ (for $k \in K, v \in V$). If ${}^{g_1}K_1 \leqslant K_2$ and ${}^{g_2}K_2 \leqslant H$, explain the precise relation between the isomorphisms associated to ${}^{g_1}K_1 \leqslant H, {}^{g_2}K_2 \leqslant K_1$ and ${}^{g_{1g_2}}K_2 \leqslant H$ (draw a picture!).